scholarly journals Competition Between Cell-Cell and Cell-Substrate Adhesion Determines Epithelial Monolayer Architecture in Culture

2021 ◽  
Author(s):  
Christian M Cammarota ◽  
Nicole S Dawney ◽  
Qingyuan Jia ◽  
Maren M Jung ◽  
Joseph A Glichowski ◽  
...  

Organ surfaces are lined by epithelial monolayers - sheets of cells that are one-cell thick. This architecture underlies tissue function, and its loss is associated with disease, including cancer. Studies of in-plane epithelial cell behaviors show that a developing epithelium behaves as a fluid in respect to the tissue plane, and can therefore readily adapt to varying mechanical influences during morphogenesis. We asked the question of how monolayer architecture is achieved, and whether it demonstrates the same fluid behavior. To address this problem, we cultured MDCK (Madin-Darby Canine Kidney) cell layers at different densities and timepoints and analyzed their architectures using a novel tool, Automated Layer Analysis (ALAn), which we introduce here. Our experimental and theoretical results lead us to propose that epithelial monolayer architecture is governed by a balance of counteracting forces due to cell-cell and cell-substrate adhesion, and that this balance is influenced by cell density. MDCK cells do not undergo obvious rearrangement along the apical-basal axis; instead, cells that do not contact the substrate aggregate on top of the monolayer. Our findings therefore imply that monolayered architecture is under more rigid control than planar tissue shape in epithelia.

2014 ◽  
Vol 11 (100) ◽  
pp. 20140684 ◽  
Author(s):  
Chenlu Wang ◽  
Sagar Chowdhury ◽  
Meghan Driscoll ◽  
Carole A. Parent ◽  
S. K. Gupta ◽  
...  

Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells ( Dictyostelium discoideum ), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact.


Pathology ◽  
1992 ◽  
Vol 24 ◽  
pp. 26
Author(s):  
M.A. Vadas ◽  
J.R. Gamble ◽  
Y. Khew-Goodall ◽  
P. Kaur

1995 ◽  
Vol 108 (2) ◽  
pp. 831-838 ◽  
Author(s):  
B.E. Symington ◽  
W.G. Carter

We previously reported that integrin alpha 3 beta 1 mediates epidermal intercellular adhesion as well as cell-substrate adhesion. P1B5, an anti-alpha 3 beta 1 specific monoclonal antibody, is a potent in vitro trigger of epidermal cell-cell adhesion and an inhibitor of cell-substrate adhesion. We now show that P1B5 specifically induces the intercellular localization of integrins alpha 2 beta 1 and alpha 3 beta 1, consistent with its role in inducing intercellular adhesion via these two integrins. P1F2, another anti-alpha 3 beta 1 antibody, does not induce either intercellular adhesion or intercellular accumulation of alpha 3 beta 1 and alpha 2 beta 1. Growth of epidermal cells in high calcium, known to induce epidermal differentiation, also induces intercellular accumulation of alpha 3 beta 1 and alpha 2 beta 1 and increased cell-cell adhesion. We therefore asked whether P1B5 treatment induces epidermal differentiation. P1B5 treatment induces changes consistent with epidermal differentiation, including increased involucrin expression, stratification, and production of squames. P1F2 treatment has none of these effects. In vivo, epidermal basal cells are in close contact with the epithelial basement membrane component epiligrin. Growth of keratinocytes on purified epiligrin but not other matrix components specifically reduces involucrin expression by P1B5-treated keratinocytes. These results suggest that integrin alpha 3 beta 1 has a unique role in epidermal differentiation, that the epitope recognized by P1B5 is involved in triggering this differentiation, and that keratinocyte adhesion to epiligrin inhibits alpha 3 beta 1-mediated differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


2016 ◽  
Vol 27 (22) ◽  
pp. 3436-3448 ◽  
Author(s):  
Luke Coburn ◽  
Hender Lopez ◽  
Benjamin J. Caldwell ◽  
Elliott Moussa ◽  
Chloe Yap ◽  
...  

We used a computational approach to analyze the biomechanics of epithelial cell aggregates—islands, stripes, or entire monolayers—that combines both vertex and contact-inhibition-of-locomotion models to include cell–cell and cell–substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high-order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of basal protrusions, traction forces, and apical aspect ratios that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell–cell junctions and apical stress is not homogeneous across the island. Instead, these parameters are higher at the island center and scale up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Without formally being a three-dimensional model, our approach has the minimal elements necessary to reproduce the distribution of cellular forces and mechanical cross-talk, as well as the distribution of principal stress in cells within epithelial cell aggregates. By making experimentally testable predictions, our approach can aid in mechanical analysis of epithelial tissues, especially when local changes in cell–cell and/or cell–substrate adhesion drive collective cell behavior.


2002 ◽  
Vol 243 (2) ◽  
pp. 226-248 ◽  
Author(s):  
Timothy R. Varney ◽  
Elisabeth Casademunt ◽  
Hoa N. Ho ◽  
Chere' Petty ◽  
Jayne Dolman ◽  
...  

2013 ◽  
Vol 127 (4) ◽  
pp. 885-895 ◽  
Author(s):  
Christina M. Van Itallie ◽  
Amber Jean Tietgens ◽  
Angel Aponte ◽  
Karin Fredriksson ◽  
Alan S. Fanning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document