scholarly journals The calcium sensor synaptotagmin-1 is critical for phasic axonal dopamine release in the striatum and mesencephalon, but is dispensable for basic motor behaviors in mice

2021 ◽  
Author(s):  
Benoit Delignat-Lavaud ◽  
Jana Kano ◽  
Charles Ducrot ◽  
Ian Masse ◽  
Sriparna Mukherjee ◽  
...  

Midbrain dopamine (DA) neurons, a population of cells that are critical for motor control, motivated behaviors and cognition, release DA via an exocytotic mechanism from both their axonal terminals and their somatodendritic (STD) compartment. In Parkinson's disease (PD), it is striking that motor dysfunctions only become apparent after extensive loss of DA innervation. Although it has been hypothesized that this resilience is due to the ability of many motor behaviors to be sustained through a basal tone of DA and diffuse transmission, experimental evidence for this is limited. Here we conditionally deleted the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (cKODA mice) to abrogate most activity-dependent axonal DA release in the striatum and mesencephalon, leaving STD DA release intact. Strikingly, Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks, suggesting that activity-dependent DA release is dispensable for such basic motor functions. Basal extracellular levels of DA in the striatum were unchanged, suggesting that a basal tone of extracellular DA is sufficient to sustain basic movement. We also found multiple adaptations in the DA system of cKODA mice, similar to those happening at early stages of PD. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.

2021 ◽  
Author(s):  
Charles Ducrot ◽  
Gregory de Carvalho ◽  
Benoit Delignat-Lavaud ◽  
Constantin Delmas ◽  
Nicolas Giguere ◽  
...  

Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which glutamate or GABA are released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. Here we tested the hypothesis that the trans-synaptic cell adhesion molecules neurexins (Nrxns) regulate DA neuron neurotransmission. Conditional deletion of all Nrxns in DA neurons (DAT::Nrxns KO) revealed that loss of Nrxns does not impair the basic development and ultrastructural characteristics of DA neuron terminals. However, loss of Nrxns caused an impairment of DA transmission revealed as a reduced rate of DA reuptake following activity-dependent DA release, decreased DA transporter levels, increased vesicular monoamine transporter expression and impaired amphetamine-induced locomotor activity. Strikingly, electrophysiological recording revealed an increase of GABA co-release from DA neuron axons in the striatum of the KO mice. These findings reveal that Nrxns act as key regulators of DA neuron connectivity and DA-mediated functions.


2020 ◽  
Vol 40 (23) ◽  
pp. 4586-4595 ◽  
Author(s):  
Callista B. Harper ◽  
Christopher Small ◽  
Elizabeth C. Davenport ◽  
Darryl W. Low ◽  
Karen J. Smillie ◽  
...  

2007 ◽  
Vol 98 (6) ◽  
pp. 3388-3396 ◽  
Author(s):  
J. Russel Keath ◽  
Michael P. Iacoviello ◽  
Lindy E. Barrett ◽  
Huibert D. Mansvelder ◽  
Daniel S. McGehee

Midbrain dopamine (DA) neurons are found in two nuclei, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). The SNc dopaminergic projections to the dorsal striatum are involved in voluntary movement and habit learning, whereas the VTA projections to the ventral striatum contribute to reward and motivation. Nicotine induces profound DA release from VTA dopamine neurons but substantially less from the SNc. Nicotinic acetylcholine receptor (nAChR) expression differs between these nuclei, but it is unknown whether there are differences in nAChR expression on the afferent projections to these nuclei. Here we have compared the nicotinic modulation of excitatory and inhibitory synaptic inputs to VTA and SNc dopamine neurons. Although nicotine enhances both the excitatory and inhibitory drive to SNc DA cells with response magnitudes similar to those seen in the VTA, the prevalence of these responses in SNc is much lower. We also found that a mixture of nAChR subtypes underlies the synaptic modulation in SNc, further distinguishing this nucleus from the VTA, where α7 nAChRs enhance glutamate inputs and non-α7 receptors enhance GABA inputs. Finally, we compared the nicotine sensitivity of DA neurons in these two nuclei and found larger response magnitudes in VTA relative to SNc. Thus the observed differences in nicotine-induced DA release from VTA and SNc are likely due to differences in nAChR expression on the afferent inputs as well as on the DA neurons themselves. This may explain why nicotine has a greater effect on behaviors associated with the VTA than the SNc.


2015 ◽  
Vol 112 (23) ◽  
pp. 7297-7302 ◽  
Author(s):  
Natalie Kaempf ◽  
Gaga Kochlamazashvili ◽  
Dmytro Puchkov ◽  
Tanja Maritzen ◽  
Sandra M. Bajjalieh ◽  
...  

Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2). Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype. Selective missorting and degradation of Syt1 in the absence of SV2A/B and Stn2 impairs the efficacy of neurotransmission at hippocampal synapses. These results indicate that endocytic sorting of Syt1 to SVs is mediated by the overlapping activities of SV2A/B and Stn2 and favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins.


2019 ◽  
Author(s):  
Zhenyong Wu ◽  
Nadiv Dharan ◽  
Sathish Thiyagarajan ◽  
Ben O’Shaughnessy ◽  
Erdem Karatekin

ABSTRACTAll membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered vesicular release of neurotransmitters and hormones. Expansion of this small pore to release cargo molecules is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins, beyond its established role in coupling calcium influx to fusion pore opening. Our results suggest that fusion pore dilation by Syt1 requires interactions with SNAREs, PI(4,5)P2, and calcium. Pore opening was abolished by a mutation of the tandem C2 domain (C2AB) hydrophobic loops of Syt1, suggesting that their calcium-induced insertion into the membrane is required for pore opening. We propose that loop insertion is also required for pore expansion, but through a distinct mechanism. Mathematical modelling suggests that membrane insertion re-orients the C2 domains bound to the SNARE complex, rotating the SNARE complex so as to exert force on the membranes in a mechanical lever action that increases the intermembrane distance. The increased membrane separation provokes pore dilation to offset a bending energy penalty. We conclude that Syt1 assumes a critical role in calcium-dependent fusion pore dilation during neurotransmitter and hormone release.SIGNIFICANCE STATEMENTMembrane fusion is a fundamental biological process, required for development, infection by enveloped viruses, fertilization, intracellular trafficking, and calcium-triggered release of neurotransmitters and hormones when cargo-laden vesicles fuse with the plasma membrane. All membrane fusion reactions proceed through an initial, nanometer-sized fusion pore which can flicker open-closed multiple times before expanding or resealing. Pore expansion is required for efficient cargo release, but underlying mechanisms are poorly understood. Using a combination of single-pore measurements and quantitative modeling, we suggest that a complex between the neuronal calcium sensor Synaptotagmin-1 and the SNARE proteins together act as a calcium-sensitive mechanical lever to force the membranes apart and enlarge the pore.


The Analyst ◽  
2020 ◽  
Vol 145 (2) ◽  
pp. 453-459
Author(s):  
Ruiying Jiao ◽  
Wei Liu ◽  
Lili Yin ◽  
Zhongjun Qiao ◽  
Jie Li ◽  
...  

Striatal dopamine (DA) release plays an essential role in many physiological functions including motor and non-motor behaviors (such as reward, motivation, and cognition).


2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Peter L. Strick ◽  
Richard P. Dum ◽  
Jean-Alban Rathelot

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to ( a) major organizational changes in the primary motor cortex and ( b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document