The Barley HvSTP13GR mutant triggers resistance against biotrophic fungi

2021 ◽  
Author(s):  
Caroline Ines Skoppek ◽  
Wilko Punt ◽  
Marleen Heinrichs ◽  
Frank Ordon ◽  
Gwendolin Wehner ◽  
...  

High-yielding and stress resistant crops are essential to ensure future food supply. Barley is an important crop to feed livestock and to produce malt, but the annual yield is threatened by pathogen infections. Pathogens can trigger an altered sugar partitioning in the host plant, that possibly leads to an advantage for the pathogen. Hampering these processes represents a promising strategy to potentially increase resistance. We analyzed the response of the barley monosaccharide transporter HvSTP13 towards biotic stress and its potential use for plant protection. The expression of HvSTP13 increased upon bacterial and fungal PAMP application, suggesting a PAMP-triggered signaling that converged on the transcriptional induction of the gene. Promoter studies indicate a region that is likely targeted by transcription factors downstream of PAMP-triggered immunity pathways. We confirmed that the non-functional HvSTP13GR variant confers resistance against an economically relevant biotrophic rust fungus, in barley. In addition, we established targeted CRISPR/Cas9 cytosine base editing in barley protoplasts to generate alternative HvSTP13 mutants and characterized the sugar transport activity and subcellular localization of the proteins. These mutants represent promising variants for future resistance analysis. Our experimental setup provides basal prerequisites to further decode the role of HvSTP13 in response to biological stress. Moreover, in line with other studies, our experiments indicate that the alteration of sugar partitioning pathways, in a host pathogen interaction, is a promising approach to achieve broad and durable resistance in plants.

Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 327-327 ◽  
Author(s):  
A. R. Wood ◽  
M. Scholler

Parthenium weed (Parthenium hysterophorus L., family Asteraceae), an annual herb of neotropic origin, is an invasive noxious weed with a pantropical distribution (1). It is particularly undesirable because of the serious health risks it poses to people living close to infestations (1). In January 1995, S. Neser (ARC-Plant Protection Research Institute, Pretoria, South Africa) collected a rust fungus on this plant near Brits, Northwest Province, South Africa (25°35′S, 27°46′E). Only uredinia were present. The same rust fungus was collected in the same area in January, March, and June of 2001, and again only uredinia were observed. In its native range, P. hysterophorus is infected by two rust fungus species, Puccinia abrupta Diet. & Holw. var. partheniicola (Jackson) Parmelee and Puccinia melampodii Diet. & Holw., but the latter species is microcyclic with telia only. The morphology of the urediniospores in the South African collections corresponds to Puccinia abrupta var. partheniicola (3): obovoid to almost triangular, 22 to 27 × 18 to 25 µm, echinulate, two subequatorial and one apical germ pores, spines absent around germ pores, wall 1 to 2.5 µm thick. The native range of Puccinia abrupta var. partheniicola is Mexico and northern South America (3). In addition, it has been recorded from Mauritius (3), Kenya, and India (H. C. Evans and C. A. Ellison, International Institute of Biological Control, CAB, 1987, unpublished data). It was intentionally introduced into Australia for the biological control of P. hysterophorus (2). Thirteen specimens in the Arthur Herbarium were examined, and only two had telia in addition to uredinia. The other 11 had only uredinia, indicating that nonformation of telia is common. Telia and uredinia are produced in high altitude, semiarid areas of Mexico, whereas in low altitude, more humid areas only uredinia are produced (1). The production of telia appears to depend on environmental conditions, and their absence is not unexpected at the Brits site, which is a high altitude (1,120 m) area with high summer rainfall (400 to 600 mm per year from November to February) and dry winters. Voucher specimens were deposited at the National Collection of Fungi, Plant Protection Research Institute, Pretoria (PREM 57298) and the Arthur Herbarium, West Lafayette, IN (PUR N1117). To our knowledge, this is the second report of this rust fungus in Africa and the first in southern Africa. References: (1) H. C. Evans. Trans. Br. Mycol. Soc. 88:105, 1987. (2) A. Parker et. al. Plant Pathol. 43:1, 1994. (3) J. A. Parmelee. Can. J. Bot. 45:2267, 1967.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanket Anaokar ◽  
Hui Liu ◽  
Jantana Keereetaweep ◽  
Zhiyang Zhai ◽  
John Shanklin

Photosynthetically derived sugars provide carbon skeletons for metabolism and carbon signals that favor anabolism. The amount of sugar available for fatty acid (FA) and triacylglycerol (TAG) synthesis depends on sugar compartmentation, transport, and demands from competing pathways. We are exploring the influence of sugar partitioning between the vacuole and cytoplasm on FA synthesis in Arabidopsis by building on our previous finding that reduced leaf sugar export in the sucrose-proton symporter2 (suc2) mutant, in combination with impaired starch synthesis in the ADP-glucose pyrophosphorylase (adg1) mutant, accumulates higher sugar levels and increased total FA and TAG compared to the wild type parent. Here we sought to relocalize sugar from the vacuole to the cytoplasm to drive additional FA/TAG synthesis and growth. Arabidopsis suc2 adg1 was therefore crossed with tonoplast monosaccharide transporter mutants tmt1 and tmt2 and overexpression of the sucrose/proton cotransporter SUC4 in which tmt1 tmt2 impairs sugar transport to the vacuole from the cytoplasm and SUC4 overexpression enhances sugar transport in the reverse direction from the vacuole to the cytoplasm. A resulting homozygous suc2 adg1 tmt1 tmt2 SUC4 line was used to test the hypothesis that increased intracellular carbon supply in the form of sugars would increase both FA and TAG accumulation. The data shows that relative to suc2 adg1, suc2 adg1 tmt1 tmt2 SUC4 significantly increases leaf total FA content by 1.29-fold to 10.9% of dry weight and TAG by 2.4-fold to 2.88%, supporting the hypothesis that mobilizing vacuolar sugar is a valid strategy for increasing vegetative oil accumulation.


1998 ◽  
Vol 336 (3) ◽  
pp. 577-585 ◽  
Author(s):  
Marie KANNIUS-JANSON ◽  
Ulf LIDBERG ◽  
Kåre HULTÉN ◽  
Amel GRITLI-LINDE ◽  
Gunnar BJURSELL ◽  
...  

The lactating mammary gland and pancreas of mouse constitute the main tissues for synthesis and secretion of a bile-salt-stimulated lipase called carboxyl ester lipase (CEL). In this paper we have analysed the endogenous CEL gene expression in mammary gland. It is shown that the gene is expressed at day 14 of pregnancy, which is synchronous with that of the whey acidic protein (WAP) gene. Even though the CEL and WAP genes are induced at the same time during mammary gland differentiation, their regulation is different with respect to dependence on lactogenic hormones. The high induction of the WAP gene expression due to the activation of signal transducer and activator of transcription (STAT)5 by prolactin has not been observed for the CEL gene, even though it has been demonstrated that both STAT5 isoforms interact with one of the γ-interferon activation sequence sites in the promoter of the CEL gene. Hence we have demonstrated that the prolactin/STAT5 signal is not involved in a general and significant activation of ‘milk genes ’. Instead of a direct effect of the lactogenic hormones, the up-regulation of the CEL gene is correlated with an increase in the number of differentiated epithelial cells. Furthermore, promoter studies using the mammary-gland-derived cell line, HC11, show that a major positive element in the CEL gene promoter interacts with a member(s) of the CCAAT-binding transcription factor/nuclear factor 1 family, binding to a palindromic site. Binding of this factor(s) is important for the tissue-specific activation of the CEL gene in the mammary gland, because no activation by this factor(s) was seen in cells of pancreatic origin.


Author(s):  
Biyun Zhu ◽  
Xiaohui Zhang ◽  
Liang Chen ◽  
Liren Wang ◽  
Dali Li

Abstract As promising genome editing tools, cytidine (CBEs) and adenosine base editors (ABEs) efficiently catalyze C•G to T•A and A•T to G•C conversions, respectively. However, CBEs or ABEs only generate single type of nucleotide conversions, which limits the sequence diversity of edited site and therapeutic applications at certain circumstances. A dual base editor(A&C-BEmax) has been developed to achieve both C•G to T•A and A•T to G•C mutations through fusion of cytidine and adenosine deaminases to Cas9n. In this protocol, we demonstrate the generation of diverse point mutations, including a simultaneous -113A-to-G and -114C-to-T conversions, in the hemoglobin gamma (HBG) gene promoter region in HUDEP-2 cells through A&C-BEmax with a single sgRNA, leading to reactivation of γ-globin for the potential treatment of β-hemoglobinopathy. A&C-BEmax is a valuable tool not only for dissecting the function of genomic sequence at a single base resolution but also for the therapeutics of genetic disorders. This step-by-step protocol is related to the publication “Dual base editor catalyzes both cytidine and adenine base conversions in human cells” in Nature Biotechnology.


2014 ◽  
Vol 618 ◽  
pp. 259-263
Author(s):  
Jiao Liu ◽  
Yan Ping Hu ◽  
Wen Rui Xia ◽  
Yuan Yao ◽  
Yang Zhou ◽  
...  

Vacuolar invertases play a vital role in the progress of cassava tuber roots starch accumulation. In order to study the regulating mechanism of cassava vacuolar invertases, the promoter of cassava vacuolar invertase 2 (MeVINV2) was isolated using the PCR amplification approach, starting with a part of coding sequences. Sequencing result showed that 47 bp MeVINV2 gene CDS sequence and 1242 bp potential promoter sequence was obtained. PlantCARE analysis revealed that the MeVINV2 gene promoter contains typical eukaryotic elements CAAT box and TATA box, and also several light-responsive elements and stress-responsive elements. These cis-acting regulatory elements might be associated to the vacuolar invertase gene function of cassava starch accumulation and biological stress defense.


2011 ◽  
Vol 24 (5) ◽  
pp. 554-561 ◽  
Author(s):  
Chuntao Yin ◽  
James E. Jurgenson ◽  
Scot H. Hulbert

Rust fungi cause devastating diseases of wheat and other cereal species globally. Genetic resistance is the preferred method to control rusts but the effectiveness of race-specific resistance is typically transient due to the genetic plasticity of rust populations. The advent of RNA interference (RNAi) technology has shown promise for the engineering of resistance to some biotrophic pathogens in plants by altering the expression of essential pathogens' genes. Gene fragments from the rust fungi Puccinia striiformis f. sp. tritici or P. graminis f. sp. tritici were delivered to plant cells through the Barley stripe mosaic virus system, and some reduced the expression of the corresponding genes in the rust fungus. The ability to detect suppression was associated with the expression patterns of the fungal genes because reduction was only detected in transcripts with relatively high levels of expression in fungal haustoria. The results indicate that an in planta RNAi approach can be used in functional genomics research for rust fungi and that it could potentially be used to engineer durable resistance.


2020 ◽  
Vol 110 (3) ◽  
pp. 532-543 ◽  
Author(s):  
Guus Bakkeren ◽  
Les J. Szabo

Among the thousands of rust species described, many are known for their devastating effects on their hosts, which include major agriculture crops and trees. Hence, for over a century, these basidiomycete pathogenic fungi have been researched and experimented with. However, due to their biotrophic nature, they are challenging organisms to work with and, needing their hosts for propagation, represent pathosystems that are not easily experimentally accessible. Indeed, efforts to perform genetics have been few and far apart for the rust fungi, though one study performed in the 1940s was famously instrumental in formulating the gene-for-gene hypothesis describing pathogen−host interactions. By taking full advantage of the molecular genetic tools developed in the 1980s, research on many plant pathogenic microbes thrived, yet similar work on the rusts remained very challenging though not without some successes. However, the genomics era brought real breakthrough research for the biotrophic fungi and with innovative experimentation and the use of heterologous systems, molecular genetic analyses over the last 2 decades have significantly advanced our insight into the function of many rust fungus genes and their role in the interaction with their hosts. This has allowed optimizing efforts for resistance breeding and the design and testing of various novel strategies to reduce the devastating diseases they cause.


Sign in / Sign up

Export Citation Format

Share Document