scholarly journals Integrating genome-wide polygenic risk scores and non-genetic risk factors to develop and validate risk prediction models for colorectal cancer

Author(s):  
Sarah EW Briggs ◽  
Philip Law ◽  
James E East ◽  
Sarah Wordsworth ◽  
Malcolm Dunlop ◽  
...  

Objective While population screening programs for cancer colorectal (CRC) have proven benefit, risk-stratified approaches may improve screening outcomes further. To date, genome-wide polygenic risk scores (PRS) for CRC have not been integrated with non-genetic risk factors. We aimed to evaluate several genome-wide approaches, and the benefit of adding PRS to the QCancer-10 (colorectal cancer) non-genetic risk model, to identify those at highest risk of CRC. Design Using UK Biobank we developed and compared six different PRS for CRC. The top-performing genome-wide and GWAS-significant PRS were then combined with QCancer-10 and performance compared to QCancer-10 alone. Results PRS derived using LDpred2 software performed best, with an odds-ratio per standard deviation of 1.58, and top age- and sex-adjusted C-statistic of 0.733 in logistic regression and 0.724 in Cox regression models in the Geographic Validation Cohort. Integrated QCancer-10+PRS models out-performed QCancer-10, with C-statistics of 0.730 and 0.693, and explained variation of 28.1% and 21.0% from QCancer-10+LDpred2 and QCancer-10 respectively in men; performance improvements in women were similar. Men in the top 20% of risk accounted for 47.6% of cases, and women 42.5% using QCancer-10+LDpred2 models, with a 3.49-fold increase in risk in men and 2.75-fold increase in women in the top 5% of risk, compared to average risk. Decision curve analysis showed that adding PRS to QCancer-10 improved net-benefit and interventions avoided across most probability thresholds. Conclusion Integrated QCancer-10+PRS models out-perform existing CRC risk prediction models. Evaluation of risk stratified screening using this approach in a bowel screening population could be warranted.

BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Sassano ◽  
Marco Mariani ◽  
Gianluigi Quaranta ◽  
Roberta Pastorino ◽  
Stefania Boccia

Abstract Background Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individualized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accuracy when adding SNPs to a prediction model with only traditional risk factors. Methods We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk prediction. We tested whether a significant trend in the increase of Area Under Curve (AUC) according to the number of SNPs could be observed, and estimated the correlation between AUC improvement and number of SNPs. We estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using random effects meta-analysis, and conducted meta-regression to investigate the association of specific factors with AUC improvement. Results We included 33 studies, 78.79% using genetic risk scores to combine genetic data. We found no significant trend in AUC improvement according to the number of SNPs (p for trend = 0.774), and no correlation between the number of SNPs and AUC improvement (p = 0.695). Pooled AUC improvement was 0.040 (95% CI: 0.035, 0.045), and the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement obtained when adding SNPs to a prediction model. In addition, models constructed in Asian individuals achieved better AUC improvement with the incorporation of SNPs compared with those developed among individuals of European ancestry. Conclusions Though not conclusive, our results provide insights on factors influencing discriminatory accuracy of SNP-enhanced models. Genetic variants might be useful to inform stratified CRC screening in the future, but further research is needed.


2021 ◽  
Author(s):  
Yixuan He ◽  
Chirag M Lakhani ◽  
Danielle Rasooly ◽  
Arjun K Manrai ◽  
Ioanna Tzoulaki ◽  
...  

OBJECTIVE: <p>Establish a polyexposure score for T2D incorporating 12 non-genetic exposure and examine whether a polyexposure and/or a polygenic risk score improves diabetes prediction beyond traditional clinical risk factors.</p> <h2><a></a>RESEARCH DESIGN AND METHODS:</h2> <p>We identified 356,621 unrelated individuals from the UK Biobank of white British ancestry with no prior diagnosis of T2D and normal HbA1c levels. Using self-reported and hospital admission information, we deployed a machine learning procedure to select the most predictive and robust factors out of 111 non-genetically ascertained exposure and lifestyle variables for the polyexposure risk score (PXS) in prospective T2D. We computed the clinical risk score (CRS) and polygenic risk score (PGS) by taking a weighted sum of eight established clinical risk factors and over six million SNPs, respectively.</p> <h2><a></a>RESULTS:</h2> <p>In the study population, 7,513 had incident T2D. The C-statistics for the PGS, PXS, and CRS models were 0.709, 0.762, and 0.839, respectively. Hazard ratios (HR) associated with risk score values in the top 10% percentile versus the remaining population is 2.00, 5.90, and 9.97 for PGS, PXS, and CRS respectively. Addition of PGS and PXS to CRS improves T2D classification accuracy with a continuous net reclassification index of 15.2% and 30.1% for cases, respectively, and 7.3% and 16.9% for controls, respectively. </p> <h2><a></a>CONCLUSIONS:</h2> <p>For T2D, the PXS provides modest incremental predictive value over established clinical risk factors. The concept of PXS merits further consideration in T2D risk stratification and is likely to be useful in other chronic disease risk prediction models.</p>


2021 ◽  
Author(s):  
Yixuan He ◽  
Chirag M Lakhani ◽  
Danielle Rasooly ◽  
Arjun K Manrai ◽  
Ioanna Tzoulaki ◽  
...  

OBJECTIVE: <p>Establish a polyexposure score for T2D incorporating 12 non-genetic exposure and examine whether a polyexposure and/or a polygenic risk score improves diabetes prediction beyond traditional clinical risk factors.</p> <h2><a></a>RESEARCH DESIGN AND METHODS:</h2> <p>We identified 356,621 unrelated individuals from the UK Biobank of white British ancestry with no prior diagnosis of T2D and normal HbA1c levels. Using self-reported and hospital admission information, we deployed a machine learning procedure to select the most predictive and robust factors out of 111 non-genetically ascertained exposure and lifestyle variables for the polyexposure risk score (PXS) in prospective T2D. We computed the clinical risk score (CRS) and polygenic risk score (PGS) by taking a weighted sum of eight established clinical risk factors and over six million SNPs, respectively.</p> <h2><a></a>RESULTS:</h2> <p>In the study population, 7,513 had incident T2D. The C-statistics for the PGS, PXS, and CRS models were 0.709, 0.762, and 0.839, respectively. Hazard ratios (HR) associated with risk score values in the top 10% percentile versus the remaining population is 2.00, 5.90, and 9.97 for PGS, PXS, and CRS respectively. Addition of PGS and PXS to CRS improves T2D classification accuracy with a continuous net reclassification index of 15.2% and 30.1% for cases, respectively, and 7.3% and 16.9% for controls, respectively. </p> <h2><a></a>CONCLUSIONS:</h2> <p>For T2D, the PXS provides modest incremental predictive value over established clinical risk factors. The concept of PXS merits further consideration in T2D risk stratification and is likely to be useful in other chronic disease risk prediction models.</p>


2021 ◽  
Author(s):  
Yixuan He ◽  
Chirag M Lakhani ◽  
Danielle Rasooly ◽  
Arjun K Manrai ◽  
Ioanna Tzoulaki ◽  
...  

OBJECTIVE: <p>Establish a polyexposure score for T2D incorporating 12 non-genetic exposure and examine whether a polyexposure and/or a polygenic risk score improves diabetes prediction beyond traditional clinical risk factors.</p> <h2><a></a>RESEARCH DESIGN AND METHODS:</h2> <p>We identified 356,621 unrelated individuals from the UK Biobank of white British ancestry with no prior diagnosis of T2D and normal HbA1c levels. Using self-reported and hospital admission information, we deployed a machine learning procedure to select the most predictive and robust factors out of 111 non-genetically ascertained exposure and lifestyle variables for the polyexposure risk score (PXS) in prospective T2D. We computed the clinical risk score (CRS) and polygenic risk score (PGS) by taking a weighted sum of eight established clinical risk factors and over six million SNPs, respectively.</p> <h2><a></a>RESULTS:</h2> <p>In the study population, 7,513 had incident T2D. The C-statistics for the PGS, PXS, and CRS models were 0.709, 0.762, and 0.839, respectively. Hazard ratios (HR) associated with risk score values in the top 10% percentile versus the remaining population is 2.00, 5.90, and 9.97 for PGS, PXS, and CRS respectively. Addition of PGS and PXS to CRS improves T2D classification accuracy with a continuous net reclassification index of 15.2% and 30.1% for cases, respectively, and 7.3% and 16.9% for controls, respectively. </p> <h2><a></a>CONCLUSIONS:</h2> <p>For T2D, the PXS provides modest incremental predictive value over established clinical risk factors. The concept of PXS merits further consideration in T2D risk stratification and is likely to be useful in other chronic disease risk prediction models.</p>


2021 ◽  
Author(s):  
Minta Thomas ◽  
Lori C Sakoda ◽  
Jeffrey K Lee ◽  
Mark A Jenkins ◽  
Andrea Burnett-Hartman ◽  
...  

2020 ◽  
Vol 21 (16) ◽  
pp. 5835
Author(s):  
Maria-Ancuta Jurj ◽  
Mihail Buse ◽  
Alina-Andreea Zimta ◽  
Angelo Paradiso ◽  
Schuyler S. Korban ◽  
...  

Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.


Stroke ◽  
2020 ◽  
Vol 51 (7) ◽  
pp. 2095-2102
Author(s):  
Eugene Y.H. Tang ◽  
Christopher I. Price ◽  
Louise Robinson ◽  
Catherine Exley ◽  
David W. Desmond ◽  
...  

Background and Purpose: Stroke is associated with an increased risk of dementia. To assist in the early identification of individuals at high risk of future dementia, numerous prediction models have been developed for use in the general population. However, it is not known whether such models also provide accurate predictions among stroke patients. Therefore, the aim of this study was to determine whether existing dementia risk prediction models that were developed for use in the general population can also be applied to individuals with a history of stroke to predict poststroke dementia with equivalent predictive validity. Methods: Data were harmonized from 4 stroke studies (follow-up range, ≈12–18 months poststroke) from Hong Kong, the United States, the Netherlands, and France. Regression analysis was used to test 3 risk prediction models: the Cardiovascular Risk Factors, Aging and Dementia score, the Australian National University Alzheimer Disease Risk Index, and the Brief Dementia Screening Indicator. Model performance or discrimination accuracy was assessed using the C statistic or area under the curve. Calibration was tested using the Grønnesby and Borgan and the goodness-of-fit tests. Results: The predictive accuracy of the models varied but was generally low compared with the original development cohorts, with the Australian National University Alzheimer Disease Risk Index (C-statistic, 0.66) and the Brief Dementia Screening Indicator (C-statistic, 0.61) both performing better than the Cardiovascular Risk Factors, Aging and Dementia score (area under the curve, 0.53). Conclusions: Dementia risk prediction models developed for the general population do not perform well in individuals with stroke. Their poor performance could have been due to the need for additional or different predictors related to stroke and vascular risk factors or methodological differences across studies (eg, length of follow-up, age distribution). Future work is needed to develop simple and cost-effective risk prediction models specific to poststroke dementia.


Sign in / Sign up

Export Citation Format

Share Document