scholarly journals Mammals adjust diel activity across gradients of urbanization

2021 ◽  
Author(s):  
Travis Gallo ◽  
Mason Fidino ◽  
Brian Gerber ◽  
Adam A. Ahlers ◽  
Julia L. Angstmann ◽  
...  

Time is a fundamental component of ecological processes. How animal behavior changes over time has been explored through well-known ecological theories like niche partitioning and predator-prey dynamics. Yet, changes in animal behavior within the shorter 24-hour light-dark cycle have largely gone unstudied. Understanding if an animal can adjust their temporal activity to mitigate or adapt to environmental change has become a recent topic of discussion and is important for effective wildlife management and conservation. While spatial habitat is a fundamental consideration in wildlife management and conservation, temporal habitat is often ignored. We formulated a temporal resource selection model to quantify the diel behavior of eight mammal species across ten U.S. cities. We found high variability in diel activity patterns within and among species and species-specific correlations between diel activity and human population density, impervious land cover, available greenspace, vegetation cover, and mean daily temperature. We also found that some species may modulate temporal behaviors to manage both natural and anthropogenic risks. Our results highlight the complexity with which temporal activity patterns interact with local environmental characteristics, and suggest that urban mammals may use time along the 24-hour cycle to reduce risk, adapt, and therefore persist in human-dominated ecosystems.

Oecologia ◽  
2022 ◽  
Author(s):  
Rachel Y. Chock ◽  
Debra M. Shier ◽  
Gregory F. Grether

AbstractCoexistence of competing species in the same foraging guild has long puzzled ecologists. In particular, how do small subordinate species persist with larger dominant competitors? This question becomes particularly important when conservation interventions, such as reintroduction or translocation, become necessary for the smaller species. Exclusion of dominant competitors might be necessary to establish populations of some endangered species. Ultimately, however, the goal should be to conserve whole communities. Determining how subordinate species escape competitive exclusion in intact communities could inform conservation decisions by clarifying the ecological conditions and processes required for coexistence at local or regional scales. We tested for spatial and temporal partitioning among six species of native, granivorous rodents using null models, and characterized the microhabitat of each species using resource-selection models. We found that the species’ nightly activity patterns are aggregated temporally but segregated spatially. As expected, we found clear evidence that the larger-bodied kangaroo rats drive spatial partitioning, but we also found species-specific microhabitat associations, which suggests that habitat heterogeneity is part of what enables these species to coexist. Restoration of natural disturbance regimes that create habitat heterogeneity, and selection of translocation sites without specific competitors, are among the management recommendations to consider in this case. More generally, this study highlights the need for a community-level approach to conservation and the usefulness of basic ecological data for guiding management decisions.


2020 ◽  
Vol 63 (5) ◽  
pp. 419-427
Author(s):  
Nehru Prabakaran

AbstractThe inter-specific resilience among mangrove species to sea level rise (SLR) is a key to design conservation strategies for this economically important ecosystem that is among the most vulnerable to SLR. Tectonic processes can cause sudden increases or drops in sea level due to subsidence or uplift of the land surface, which can also provide insights for the mangrove community responses to rapid sea level change. This study aimed to investigate the responses of mangrove species to rapid SLR caused by land subsidence of 1.1 m during the 2004 Sumatra-Andaman earthquake at Car Nicobar Island. The Rhizophora spp. showed remarkable resilience to this rapid SLR, while the landward mangrove vegetation comprising Bruguiera spp., Lumnitzera spp., Sonneratia spp. etc., were unable to survive. Also, Rhizophora spp. establishment in the previous landward mangrove zones was more rapid than the landward mangrove species establishment in the previous terrestrial zones. The observed resilience of Rhizophora spp. may be due to the local specific geological legacy and species-specific ecological processes. However, further studies focusing on microcosm experiments to understand the Rhizophora spp. resilience to rapid SLR at the study site is required to strengthen these observations.


2015 ◽  
Vol 65 (3-4) ◽  
pp. 209-217 ◽  
Author(s):  
Yadong Xue ◽  
Diqiang Li ◽  
Wenfa Xiao ◽  
Fang Liu ◽  
Yuguang Zhang ◽  
...  

There are significant gaps in our knowledge of wild camel ecology; especially the activity patterns that allow them to adapt to desert environments. The wild Bactrian camel (Camelus bactrianus) is a critically endangered species that survives in the extreme desert conditions of Central Asia. We conducted camera trapping surveys at seven watering sites in the northern piedmont of the Altun Mountains from 2010 to 2012. We analyzed the frequency of photo-captures to elucidate the wild camels’ diel activity patterns, and the seasonal variation in their activity at watering sites. We found that these wild camels were predominantly diurnal at watering sites, with an increase in relative activity from sunrise, reaching a peak toward midday, and then gradually decreasing in activity until sunset. The camels visited watering sites more often in winter than in summer. These results provide a guide for water development in the conservation of ungulates in arid areas.


2012 ◽  
Vol 107 (4) ◽  
pp. 1123-1141 ◽  
Author(s):  
Paweł Kuśmierek ◽  
Michael Ortiz ◽  
Josef P. Rauschecker

Auditory cortical processing is thought to be accomplished along two processing streams. The existence of a posterior/dorsal stream dealing, among others, with the processing of spatial aspects of sound has been corroborated by numerous studies in several species. An anterior/ventral stream for the processing of nonspatial sound qualities, including the identification of sounds such as species-specific vocalizations, has also received much support. Originally discovered in anterolateral belt cortex, most recent work on the anterior/ventral pathway has been performed on far anterior superior temporal (ST) areas and on ventrolateral prefrontal cortex (VLPFC). Regions of the anterior/ventral stream near its origin in early auditory areas have been less explored. In the present study, we examined three early auditory regions with different anteroposterior locations (caudal, middle, and rostral) in awake rhesus macaques. We analyzed how well classification based on sound-evoked activity patterns of neuronal populations replicates the original stimulus categories. Of the three regions, the rostral region (rR), which included core area R and medial belt area RM, yielded the greatest classification success across all stimulus classes or between classes of natural sounds. Starting from ∼80 ms past stimulus onset, clustering based on the population response in rR became clearly more successful than clustering based on responses from any other region. Our study demonstrates that specialization for sound-identity processing can be found very early in the auditory ventral stream. Furthermore, the fact that this processing develops over time can shed light on underlying mechanisms. Finally, we show that population analysis is a more sensitive method for revealing functional specialization than conventional types of analysis.


1966 ◽  
Vol 54 (1) ◽  
pp. 279
Author(s):  
J. M. Cherrett ◽  
J. B. Trefethen

1993 ◽  
Vol 23 (10) ◽  
pp. 2286-2299 ◽  
Author(s):  
R.A. Lautenschlager

Reviewed studies of the effects of forest herbicide applications on wildlife often lacked replication, pretreatment information, and (or) were conducted for only one or two growing seasons after treatment. Because of these problems, as well as the use of dissimilar sampling techniques, study conclusions have sometimes been contradictory. A review of eight studies of the effects of herbicide treatments on northern songbird populations in regenerating clearcuts indicates that total songbird populations are seldom reduced during the growing season after treatment. Densities of species that use early successional brushy, deciduous cover are sometimes reduced, while densities of species which commonly use more open areas, sometimes increase. A review of 14 studies of the effects of herbicide treatments on small mammals indicates that like songbirds, small mammal responses are species specific. Some species are unaffected, while some select and others avoid herbicide-treated areas. Only studies that use kill or removal trapping to study small mammal responses show density reductions associated with herbicide treatment. It seems that some small mammal species may be reluctant to venture into disturbed areas, although residents in those areas are apparently not affected by the disturbance. Fourteen relevant studies examined the effects of conifer release treatments on moose and deer foods and habitat use. Conifer release treatments reduce the availability of moose browse for as long as four growing seasons after treatment. The degree of reduction during the growing season after treatment varies with the herbicide and rate used. Deer use of treated areas remains unchanged or increases during the first growing season after treatment. Eight years after treating a naturally regenerated spruce–fir stand browse was three to seven times more abundant on treated than on control plots (depending on the chemical and rate used). Forage quality (nitrogen, ash, and moisture) of crop trees increased one growing season after the soil-active herbicide simazine was applied to control competition around outplanted 3-year-old balsam fir seedlings.


2018 ◽  
Vol 56 (4) ◽  
pp. 872-881 ◽  
Author(s):  
Kaitlyn M. Gaynor ◽  
Paola S. Branco ◽  
Ryan A. Long ◽  
Dominique D. Gonçalves ◽  
Petter K. Granli ◽  
...  

2001 ◽  
Vol 35 (2) ◽  
pp. 19-28 ◽  
Author(s):  
Phillip S. Lobel

The simple thesis of this paper is that using rebreathers to study fish behavioral ecology, especially bioacoustics, is well worth the expense and additional training required. The scientific goal of my bioacoustic research is to determine which fishes produce species-specific sound patterns exclusively with explicit acts of courtship and mating. This provides scientific insight into evolutionary and ecological processes and also provides data necessary to develop the passive acoustic detection technology for monitoring fish reproduction. When used on a daily basis, rebreathers, in my experience, are economical and as practical as open circuit scuba. This is based both on the costs of diving as well as the efficiency of gathering useful data. The use of open circuit SCUBA while conducting acoustic recordings results in a loss of at least 40% of the data due to the bubble noise from a divers breathing. Rebreathers also provide extended bottom time, especially in shallow water, which enhances a diver's ability to observe fish and gather acoustic-behavioral data.


Sign in / Sign up

Export Citation Format

Share Document