Fish Bioacoustics and Behavior: Passive Acoustic Detection and the Application of a Closed-Circuit Rebreather for Field Study

2001 ◽  
Vol 35 (2) ◽  
pp. 19-28 ◽  
Author(s):  
Phillip S. Lobel

The simple thesis of this paper is that using rebreathers to study fish behavioral ecology, especially bioacoustics, is well worth the expense and additional training required. The scientific goal of my bioacoustic research is to determine which fishes produce species-specific sound patterns exclusively with explicit acts of courtship and mating. This provides scientific insight into evolutionary and ecological processes and also provides data necessary to develop the passive acoustic detection technology for monitoring fish reproduction. When used on a daily basis, rebreathers, in my experience, are economical and as practical as open circuit scuba. This is based both on the costs of diving as well as the efficiency of gathering useful data. The use of open circuit SCUBA while conducting acoustic recordings results in a loss of at least 40% of the data due to the bubble noise from a divers breathing. Rebreathers also provide extended bottom time, especially in shallow water, which enhances a diver's ability to observe fish and gather acoustic-behavioral data.

2012 ◽  
Vol 490-495 ◽  
pp. 1714-1717
Author(s):  
Li Qing Fang ◽  
Hong Kai Wang ◽  
Kai Chen

Acoustic sensoxr array technology is the one of the key technology of passive acoustic detection technology, whether the single array has a good performance on direction will directly affect the accuracy of the locating system. In order to choose the best single array on direction, in this paper, respectively selected representative plane array and spatial array from a number of typical single arrays to analyze, find out the advantages and disadvantages of two single arrays. On this basis, around the idea of integrating the advantage of symmetric spatial array and plane cross five-element array, according to characteristics of the structure of this two kinds of arrays to design a new locating model—spatial five-element array. And compared with two kinds of single array mentioned above, the results of comparison show that the locating accuracy of spatial five-elements array is superior to both kinds of mentioned, and have high engineering value.


2020 ◽  
Vol 63 (5) ◽  
pp. 419-427
Author(s):  
Nehru Prabakaran

AbstractThe inter-specific resilience among mangrove species to sea level rise (SLR) is a key to design conservation strategies for this economically important ecosystem that is among the most vulnerable to SLR. Tectonic processes can cause sudden increases or drops in sea level due to subsidence or uplift of the land surface, which can also provide insights for the mangrove community responses to rapid sea level change. This study aimed to investigate the responses of mangrove species to rapid SLR caused by land subsidence of 1.1 m during the 2004 Sumatra-Andaman earthquake at Car Nicobar Island. The Rhizophora spp. showed remarkable resilience to this rapid SLR, while the landward mangrove vegetation comprising Bruguiera spp., Lumnitzera spp., Sonneratia spp. etc., were unable to survive. Also, Rhizophora spp. establishment in the previous landward mangrove zones was more rapid than the landward mangrove species establishment in the previous terrestrial zones. The observed resilience of Rhizophora spp. may be due to the local specific geological legacy and species-specific ecological processes. However, further studies focusing on microcosm experiments to understand the Rhizophora spp. resilience to rapid SLR at the study site is required to strengthen these observations.


2018 ◽  
Vol 8 (8) ◽  
pp. 1343
Author(s):  
Johann Köhler ◽  
Andrea Knauer

The growth and aggregation behavior of metal nanoparticles can be modulated by surfactants and different other additives. Here the concept of how open-circuit mixed electrodes helps to understand the electrical aspects of nanoparticle growth and the consequences for the particle geometries is discussed. A key issue is the self-polarization effect of non-spherical metal nanoparticles, which causes a local decoupling of anodic and partial processes and asymmetry in the local rates of metal deposition. These asymmetries can contribute to deciding to the growth of particles with high aspect ratios. The interpretation of electrochemical reasons for particle growth and behavior is supported by experimental results of nanoparticle syntheses supported by microfluidics which can supply high yields of non-spherical nanoparticles and colloidal product solutions of high homogeneity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sebastián Muñoz-Duque ◽  
Silvia López-Casas ◽  
Héctor Rivera-Gutiérrez ◽  
Luz Jiménez-Segura

Fish produce sounds that are usually species-specific and associated with particular behaviors and contexts. Acoustic characterization enables the use of sounds as natural acoustic labels for species identification. Males of Prochilodus magdalenae produce mating sounds. We characterized  these sounds and tested their use in natural habitats, to use passive acoustic monitoring for spawning ground identification. We identified two types of acoustic signals: simple pulses and pulse trains. Simple pulses were 13.7 ms long, with peak frequency of 365 Hz, whereas pulse train were 2.3 s long, had peak frequency of 399 Hz, 48.6 pulses and its pulses lasted 12.2 ms, with interpulse interval of 49.0 ms long and 22.3 Hz pulse rate. We did not detect spawning in  absence of male calls nor differences in male sounds at different female densities. We found differences in train duration, pulse rate, and pulse duration in trains, according to the fish's source sites, but these sites were not well discriminated based on bioacoustical variables. In rivers, we located two P. magdalenae spawning grounds and recognized calls from another fish species (Megaleporinus muyscorum). We did not find a significant relationship between fish size and call peak frequency for P. magdalenae.


2019 ◽  
Vol 20 (3) ◽  
pp. 476 ◽  
Author(s):  
CATALDO PIERRI ◽  
PAOLO COLANGELO ◽  
MICHELA DEL PASQUA ◽  
CATERINA LONGO ◽  
ADRIANA GIANGRANDE

Filter feeding invertebrates are a relevant component of fouling assemblages with a pivotal role in ecological processes, since they improve water quality, enhance habitat heterogeneity and transfer organic matter from the water column to the benthos. They modulate the availability of resources to other species, with effects on the density and behavior of the surrounding macrofauna. The fanworm Sabella spallanzanii, one of the largest and most abundant Mediterranean filter feeders, provides a shelter for predation and a secondary substrate for algae and settlement for sessile invertebrates. We tested its role in driving the structure of fouling assemblages, through a removal experiment.The experiment was one-year-long, with four sampling times. The effect of the removal on the fouling community was marginal in terms of species richness and evenness, while the biomass showed important differences, with a constant increase over time with higher values in the samples containing S. spallanzanii. At the end of observations, the biomass reached the value of 3917 g DW m-2 in controls and 2073 g DW m-2 in treatments. The empty space left by fanworms was not used by other species with similar biomasses. It is possible that the functioning of fouling communities may, in the event of loss of species, fluctuate in terms of biomass mobilization to different compartments, either towards the pelagic compartment or to the detritus chain. In systems with reduced water turnover, this by-pass can have important consequences in terms of stability and ecological balance.


2013 ◽  
Vol 33 (9) ◽  
pp. 0906001 ◽  
Author(s):  
张伟超 Zhang Weichao ◽  
赵洪 Zhao Hong ◽  
刘通 Liu Tong ◽  
王国利 Wang Guoli ◽  
李锐海 Li Ruihai

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehdi Behroozi ◽  
Xavier Helluy ◽  
Felix Ströckens ◽  
Meng Gao ◽  
Roland Pusch ◽  
...  

Abstract Animal-fMRI is a powerful method to understand neural mechanisms of cognition, but it remains a major challenge to scan actively participating small animals under low-stress conditions. Here, we present an event-related functional MRI platform in awake pigeons using single-shot RARE fMRI to investigate the neural fundaments for visually-guided decision making. We established a head-fixated Go/NoGo paradigm, which the animals quickly learned under low-stress conditions. The animals were motivated by water reward and behavior was assessed by logging mandibulations during the fMRI experiment with close to zero motion artifacts over hundreds of repeats. To achieve optimal results, we characterized the species-specific hemodynamic response function. As a proof-of-principle, we run a color discrimination task and discovered differential neural networks for Go-, NoGo-, and response execution-phases. Our findings open the door to visualize the neural fundaments of perceptual and cognitive functions in birds—a vertebrate class of which some clades are cognitively on par with primates.


Sign in / Sign up

Export Citation Format

Share Document