scholarly journals Kin discrimination modifies fitness, spatial segregation and matrix sharing between strains with low relatedness in Bacillus subtilis biofilms

2021 ◽  
Author(s):  
Maja Bolješić ◽  
Barbara Kraigher ◽  
Barbara Jerič Kokelj ◽  
Iztok Dogsa ◽  
Ines Mandic-Mulec

Microorganisms in nature form multicellular groups called biofilms. In biofilms bacteria embedded in a matrix of extracellular polymeric substances (EPS) interact intensely, due to their proximity to each other. Most studies have investigated genetically homogeneous biofilms, leaving a gap in knowledge on genetically heterogeneous biofilms. Recent insights show that a Gram-positive model bacterium, Bacillus subtilis, discriminates between strains of high (kin) and low (non-kin) phylogenetic relatedness, reflected in merging (kin) and boundaries (non-kin) between swarms. However, it is not clear how kinship between interacting strains affects their fitness, the genotype distribution, and the EPS sharing in floating biofilms (pellicles). To address this gap in knowledge we cultivate B. subtilis strains as mixtures of kin and non-kin strains in static cultures, allowing them to form pellicles. We show here that in non-kin pellicles only one strain’s fitness was reduced; at the same time, strains segregated into larger patches and exhibited decreased matrix sharing, as compared to kin and isogenic pellicles, in which both strains had comparable colony forming units (CFU) counts and more homogenous cell mixing. Overall, our results emphasize kin discrimination (KD) as a social behavior that shapes fitness, spatial segregation and sharing of the extracellular matrix in genetically heterogenous biofilms of B. subtilis.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Naomi Shimokawa-Chiba ◽  
Claudia Müller ◽  
Keigo Fujiwara ◽  
Bertrand Beckert ◽  
Koreaki Ito ◽  
...  

AbstractRescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


Heterocycles ◽  
2013 ◽  
Vol 87 (2) ◽  
pp. 307 ◽  
Author(s):  
Hee Jae Shin ◽  
Fakir Shahidullah Tareq ◽  
Ji Hye Kim ◽  
Min Ah Lee ◽  
Hyi-Seung Lee ◽  
...  

2015 ◽  
Vol 80 (12) ◽  
pp. 1589-1597 ◽  
Author(s):  
L. S. Khailova ◽  
P. A. Nazarov ◽  
N. V. Sumbatyan ◽  
G. A. Korshunova ◽  
T. I. Rokitskaya ◽  
...  

2004 ◽  
Vol 21 (2) ◽  
pp. 69-78 ◽  
Author(s):  
Patricia A. Maurice ◽  
Maciej Manecki ◽  
Jeremy B. Fein ◽  
Jennifer Schaefer

2021 ◽  
Vol 9 (1) ◽  
pp. 18-26
Author(s):  
Ade Maria Ulfa ◽  
◽  
Nofita Nofita ◽  
Bangun Saras Sandi ◽  
◽  
...  

ABSTRACT Sweat is produced by the apocrine glands, if infected by bacteria that play a role in the decay process will certainly produce foot odor. Some of the bacteria that cause, including Staphylococcus epidermis, Corynebacterium acne and there is one bacterium that causes pungent foot odor that is Bacillus subtilis. Bacillus subtilis enzyme leucine dehydrogenase produced the highest, resulting in isovaleric acid foot odor. Lime peel (Citrus aurantifolia) has the potential to be developed for the antibacterial active ingredient of foot odor contained in tannins, alkaloids and flavonoids. Spray can be effective for inhibition of feet due to water fleas or bacterial infections. The purpose of this research is to test the inhibitory zone of the preparation of foot odor spray ethanol extract of lime peel (Citrus aurantifolia) with variations of gelling agent. Bacterial inhibition zone testing on extracts of lime peel spray preparations using the disc method. This test was carried out on spray with extract concentration of 0% extract base carbopol, 0% extract base HPMC, 0.2% extract base carbopol, 0.2% extract base HPMC, 0.4% extract base carbopol, 0.4% extract base HPMC and positive control with an average inhibition zone of 9,13 mm, 9,12 mm, 11,86 mm, 11,29 mm, 13,17 mm, 12,30 mm, 8,13 mm against the bacterium Bacillus subtilis. Antibacterial test results were analyzed using ONE WAY ANOVA, the results of statistical analysis on the preparation of lime peel extract showed a significant inhibition zone difference of 0.000 (P = <0.05) between all concentrations. Lime peel extract spray is effective in inhibiting the bacterium Bacillus subtilis. Key words: Sweat of foot odor, Lime skin (Citrus aurantifolia), Spray, bacteri Bacillus subtilis


2019 ◽  
Author(s):  
Naomi Shimokawa-Chiba ◽  
Claudia Müller ◽  
Keigo Fujiwara ◽  
Bertrand Beckert ◽  
Koreaki Ito ◽  
...  

SummaryRescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named ResQ. Genetic analysis shows that B. subtilis requires the function of either trans-translation or ResQ for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-EM characterization demonstrates that ResQ binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although ResQ is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


Sign in / Sign up

Export Citation Format

Share Document