scholarly journals Flygenvectors: The spatial and temporal structure of neural activity across the fly brain

2021 ◽  
Author(s):  
Evan S. Schaffer ◽  
Neeli Mishra ◽  
Matthew R. Whiteway ◽  
Wenze Li ◽  
Michelle B. Vancura ◽  
...  

What are the spatial and temporal scales of brainwide neuronal activity, and how do activities at different scales interact? We used SCAPE microscopy to image a large fraction of the central brain of adult Drosophila melanogaster with high spatiotemporal resolution while flies engaged in a variety of behaviors, including running, grooming and flailing. This revealed neural representations of behavior on multiple spatial and temporal scales. The activity of most neurons across the brain correlated (or, in some cases, anticorrelated) with running and flailing over timescales that ranged from seconds to almost a minute. Grooming elicited a much weaker global response. Although these behaviors accounted for a large fraction of neural activity, residual activity not directly correlated with behavior was high dimensional. Many dimensions of the residual activity reflect the activity of small clusters of spatially organized neurons that may correspond to genetically defined cell types. These clusters participate in the global dynamics, indicating that neural activity reflects a combination of local and broadly distributed components. This suggests that microcircuits with highly specified functions are provided with knowledge of the larger context in which they operate, conferring a useful balance of specificity and flexibility.

Author(s):  
S. G. Lambrakos ◽  
J. G. Michopoulos

The present paper focuses on rapid energy deposition processes, where there is extremely strong filtering of spatial and temporal structure within the associated diffusion pattern. This strong filtering tends to establish conditions where reconstruction of detailed features of the energy source using data-driven inverse analysis is not well posed. These strong filtering conditions imply that information that is available concerning the coupling of energy into a spatial region of interest from the site of surface deposition will be difficult to correlate with experimental observations of the associated energy diffusion pattern. The analysis and simulations imply that rapid energy deposition should be characterized by two distinctly separate scales for both spatial and temporal structures. Accordingly, the inverse rapid energy deposition problem requires a formulation with respect to system parameterization that is in terms of two separate sets of parameters. One represents the energy source characteristics on spatial and temporal scales commensurate with that of thermal diffusivity within the material, and the other represents energy source characteristics on spatial and temporal scales commensurate with those of surface phenomena.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Christiaan P. J. de Kock ◽  
Jean Pie ◽  
Anton W. Pieneman ◽  
Rebecca A. Mease ◽  
Arco Bast ◽  
...  

AbstractDiversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Zarai Besma ◽  
Walter Christian ◽  
Michot Didier ◽  
Montoroi Jean Pierre ◽  
Hachicha Mohamed

2008 ◽  
Vol 1 (2) ◽  
pp. 81-88 ◽  
Author(s):  
C. Zevenbergen ◽  
W. Veerbeek ◽  
B. Gersonius ◽  
S. Van Herk

2015 ◽  
Vol 120 ◽  
pp. 51-60 ◽  
Author(s):  
Yuval ◽  
Meytar Sorek–Hamer ◽  
Amnon Stupp ◽  
Pinhas Alpert ◽  
David M. Broday

1986 ◽  
Vol 64 (8) ◽  
pp. 722-732 ◽  
Author(s):  
J. D. Mee ◽  
D. M. Tortolo ◽  
M. B. Coukell

During development, prestalk and prespore cells of Dictyostelium discoideum become organized in multicellular structures. This physical association makes it difficult to characterize the two cell types biochemically and physiologically. In the present study, we have separated prestalk and prespore cells from 16-h slugs by the method of Tsang and Bradbury and have examined a number of chemotaxis-associated properties of these cells. When assayed on phosphate-buffered agar under both gradient and nongradient conditions, isolated prestalk cells responded chemotactically to cAMP and, unexpectedly, to folate and certain folate derivatives. In contrast, separated prespore cells failed to respond appreciably to any of these compounds. Neither prestalk nor prespore cells of strain HC91 exhibited a cAMP-induced increase in intracellular cGMP. However, a cGMP response was observed in both prestalk and prespore cells of strain NP368, a cGMP phosphodiesterase deficient mutant. Both cell types exhibited comparable cAMP-mediated light-scattering changes and possessed similar levels of surface cAMP- and folate-binding sites. On the other hand, prestalk cells had at least fourfold higher cAMP phosphodiesterase and folate deaminase activities than prespore cells, and a large fraction of both activities was on the cell surface. Therefore, the greater chemotactic response of prestalk cells to cAMP and folate on agar might be due, in part, to their increased capacity to generate a chemoattractant gradient. Results obtained in this study demonstrate that prestalk and prespore cells separated by this procedure can be used in certain physiological as well as biochemical experiments.


Hydrobiologia ◽  
2008 ◽  
Vol 611 (1) ◽  
pp. 1-4 ◽  
Author(s):  
A. Razinkovas ◽  
Z. Gasiūnaitė ◽  
P. Viaroli ◽  
J. M. Zaldívar

2015 ◽  
Vol 19 (8) ◽  
pp. 3541-3556 ◽  
Author(s):  
M. Majerova ◽  
B. T. Neilson ◽  
N. M. Schmadel ◽  
J. M. Wheaton ◽  
C. J. Snow

Abstract. Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater–surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.


Sign in / Sign up

Export Citation Format

Share Document