scholarly journals Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing

Author(s):  
Igor Stevanovski ◽  
Sanjog R. Chintalaphani ◽  
Hasindu Gamaarachchi ◽  
James M. Ferguson ◽  
Sandy S. Pineda ◽  
...  

ABSTRACTShort-tandem repeat (STR) expansions are an important class of pathogenic genetic variants. Over forty neurological and neuromuscular diseases are caused by STR expansions, with 37 different genes implicated to date. Here we describe the use of programmable targeted long-read sequencing with Oxford Nanopore’s ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single, simple assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of expanded and non-expanded STR sites. In doing so, the assay correctly diagnoses all individuals in a cohort of patients (n = 27) with various neurogenetic diseases, including Huntington’s disease, fragile X syndrome and cerebellar ataxia (CANVAS) and others. Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing, and identifies non-canonical STR motif conformations and internal sequence interruptions. Even in our relatively small cohort, we observe a wide diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of STR expansion disorders. Finally, we show how the flexible inclusion of pharmacogenomics (PGx) genes as secondary ReadUntil targets can identify clinically actionable PGx genotypes to further inform patient care, at no extra cost. Our study addresses the need for improved techniques for genetic diagnosis of STR expansion disorders and illustrates the broad utility of programmable long-read sequencing for clinical genomics.One sentence summaryThis study describes the development and validation of a programmable targeted nanopore sequencing assay for parallel genetic diagnosis of all known pathogenic short-tandem repeats (STRs) in a single, simple test.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sanjog R. Chintalaphani ◽  
Sandy S. Pineda ◽  
Ira W. Deveson ◽  
Kishore R. Kumar

Abstract Background Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington’s disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. Main body STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic ‘AAGGG’ repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of ‘CGG’ repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. Conclusion We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mathys Grapotte ◽  
Manu Saraswat ◽  
Chloé Bessière ◽  
Christophe Menichelli ◽  
Jordan A. Ramilowski ◽  
...  

AbstractUsing the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 500
Author(s):  
Juan A. Subirana ◽  
Xavier Messeguer

Repetitive genome regions have been difficult to sequence, mainly because of the comparatively small size of the fragments used in assembly. Satellites or tandem repeats are very abundant in nematodes and offer an excellent playground to evaluate different assembly methods. Here, we compare the structure of satellites found in three different assemblies of the Caenorhabditis elegans genome: the original sequence obtained by Sanger sequencing, an assembly based on PacBio technology, and an assembly using Nanopore sequencing reads. In general, satellites were found in equivalent genomic regions, but the new long-read methods (PacBio and Nanopore) tended to result in longer assembled satellites. Important differences exist between the assemblies resulting from the two long-read technologies, such as the sizes of long satellites. Our results also suggest that the lengths of some annotated genes with internal repeats which were assembled using Sanger sequencing are likely to be incorrect.


2021 ◽  
Author(s):  
Linda Zhou ◽  
Chunmin Ge ◽  
Thomas Malachowski ◽  
Ji Hun Kim ◽  
Keerthivasan Raanin Chandradoss ◽  
...  

AbstractShort tandem repeat (STR) instability is causally linked to pathologic transcriptional silencing in a subset of repeat expansion disorders. In fragile X syndrome (FXS), instability of a single CGG STR tract is thought to repress FMR1 via local DNA methylation. Here, we report the acquisition of more than ten Megabase-sized H3K9me3 domains in FXS, including a 5-8 Megabase block around FMR1. Distal H3K9me3 domains encompass synaptic genes with STR instability, and spatially co-localize in trans concurrently with FMR1 CGG expansion and the dissolution of TADs. CRISPR engineering of mutation-length FMR1 CGG to normal-length preserves heterochromatin, whereas cut-out to pre-mutation-length attenuates a subset of H3K9me3 domains. Overexpression of a pre-mutation-length CGG de-represses both FMR1 and distal heterochromatinized genes, indicating that long-range H3K9me3-mediated silencing is exquisitely sensitive to STR length. Together, our data uncover a genome-wide surveillance mechanism by which STR tracts spatially communicate over vast distances to heterochromatinize the pathologically unstable genome in FXS.One-Sentence SummaryHeterochromatinization of distal synaptic genes with repeat instability in fragile X is reversible by overexpression of a pre-mutation length CGG tract.


2020 ◽  
Author(s):  
Missa Millogo ◽  
Serge Theophile Soubeiga ◽  
Bapio Valerie Jean Telesphore Bazie ◽  
Theodora Mahoukede Zohoncon ◽  
Albert Theophane Yonli ◽  
...  

Abstract Background: the establishment of filiation by the current ABO, HLA, MNS, Kells and serum tests, pose a real reliability problem. It is then necessary to combine these methods with or to use high-performance methods such as microsatellite genetic analysis or short tandem repeats. This study aimed to compare the short tandem repeat technique with ABO/Rhesus system in combination with electrophoresis of hemoglobin. Methods: Fourteen (14) contested paternity trios were investigated. Blood samples were collected to determine blood groups using the Beth-Vincent method and the type of hemoglobin by electrophoresis. Blood spots on FTA paper were used for the analysis of 16 STR loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA, Amel) by capillary electrophoresis on the ABI 31310 Genetic Analyzer. The generated sequences were analyzed with GeneMapper® software version 3.2.1. The data were analyzed to determine the paternity index and the probability of paternity. Results: Of the fourteen (14) trios studied, ten (10) cases were probable inclusion, three (03) cases were exclusion and one (01) case was an undetermined paternity outcome with the ABO-Rhesus/ electrophoresis of hemoglobin system. While the analysis of genetic polymorphisms in DNA gave five (05) inclusions versus nine (09) exclusions of paternity. Of the 10 probable inclusion cases given by the ABO-Rhesus/Electrophoresis of hemoglobin system, only 05 cases (50%) were confirmed for inclusion by Short tandem repeat analysis. Conclusion: The analysis of short tandem repeat with sixteen genetic markers is more reliable in determining paternity than ABO-Rhesus/hemoglobin electrophoresis techniques.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 381 ◽  
Author(s):  
Olivier Tytgat ◽  
Yannick Gansemans ◽  
Jana Weymaere ◽  
Kaat Rubben ◽  
Dieter Deforce ◽  
...  

Nanopore sequencing for forensic short tandem repeats (STR) genotyping comes with the advantages associated with massively parallel sequencing (MPS) without the need for a high up-front device cost, but genotyping is inaccurate, partially due to the occurrence of homopolymers in STR loci. The goal of this study was to apply the latest progress in nanopore sequencing by Oxford Nanopore Technologies in the field of STR genotyping. The experiments were performed using the state of the art R9.4 flow cell and the most recent R10 flow cell, which was specifically designed to improve consensus accuracy of homopolymers. Two single-contributor samples and one mixture sample were genotyped using Illumina sequencing, Nanopore R9.4 sequencing, and Nanopore R10 sequencing. The accuracy of genotyping was comparable for both types of flow cells, although the R10 flow cell provided improved data quality for loci characterized by the presence of homopolymers. We identify locus-dependent characteristics hindering accurate STR genotyping, providing insights for the design of a panel of STR loci suited for nanopore sequencing. Repeat number, the number of different reference alleles for the locus, repeat pattern complexity, flanking region complexity, and the presence of homopolymers are identified as unfavorable locus characteristics. For single-contributor samples and for a limited set of the commonly used STR loci, nanopore sequencing could be applied. However, the technology is not mature enough yet for implementation in routine forensic workflows.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Arne De Roeck ◽  
Wouter De Coster ◽  
Liene Bossaerts ◽  
Rita Cacace ◽  
Tim De Pooter ◽  
...  

AbstractTechnological limitations have hindered the large-scale genetic investigation of tandem repeats in disease. We show that long-read sequencing with a single Oxford Nanopore Technologies PromethION flow cell per individual achieves 30× human genome coverage and enables accurate assessment of tandem repeats including the 10,000-bp Alzheimer’s disease-associated ABCA7 VNTR. The Guppy “flip-flop” base caller and tandem-genotypes tandem repeat caller are efficient for large-scale tandem repeat assessment, but base calling and alignment challenges persist. We present NanoSatellite, which analyzes tandem repeats directly on electric current data and improves calling of GC-rich tandem repeats, expanded alleles, and motif interruptions.


2019 ◽  
Vol 116 (46) ◽  
pp. 23243-23253 ◽  
Author(s):  
Arvis Sulovari ◽  
Ruiyang Li ◽  
Peter A. Audano ◽  
David Porubsky ◽  
Mitchell R. Vollger ◽  
...  

Short tandem repeats (STRs) and variable number tandem repeats (VNTRs) are important sources of natural and disease-causing variation, yet they have been problematic to resolve in reference genomes and genotype with short-read technology. We created a framework to model the evolution and instability of STRs and VNTRs in apes. We phased and assembled 3 ape genomes (chimpanzee, gorilla, and orangutan) using long-read and 10x Genomics linked-read sequence data for 21,442 human tandem repeats discovered in 6 haplotype-resolved assemblies of Yoruban, Chinese, and Puerto Rican origin. We define a set of 1,584 STRs/VNTRs expanded specifically in humans, including large tandem repeats affecting coding and noncoding portions of genes (e.g., MUC3A, CACNA1C). We show that short interspersed nuclear element–VNTR–Alu (SVA) retrotransposition is the main mechanism for distributing GC-rich human-specific tandem repeat expansions throughout the genome but with a bias against genes. In contrast, we observe that VNTRs not originating from retrotransposons have a propensity to cluster near genes, especially in the subtelomere. Using tissue-specific expression from human and chimpanzee brains, we identify genes where transcript isoform usage differs significantly, likely caused by cryptic splicing variation within VNTRs. Using single-cell expression from cerebral organoids, we observe a strong effect for genes associated with transcription profiles analogous to intermediate progenitor cells. Finally, we compare the sequence composition of some of the largest human-specific repeat expansions and identify 52 STRs/VNTRs with at least 40 uninterrupted pure tracts as candidates for genetically unstable regions associated with disease.


2017 ◽  
Author(s):  
James Sun ◽  
Linda Zhou ◽  
Daniel J. Emerson ◽  
Thomas G. Gilgenast ◽  
Katelyn Titus ◽  
...  

AbstractMore than 25 inherited neurological disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why specific STRs are susceptible to unstable expansion leading to severe pathology, whereas tens of thousands of normal-length repeat tracts across the human genome are relatively stable. Here, we unexpectedly discover that nearly all STRs associated with repeat expansion diseases are located at boundaries demarcating 3-D chromatin domains. We find that boundaries exhibit markedly higher CpG island density compared to loci internal to domains. Importantly, disease-associated STRs are specifically localized to ultra-dense CpG island-rich boundaries, suggesting that these loci might be hotspots for epigenetic instability and topological disruption upon unstable expansion. In Fragile X Syndrome, mutation-length expansion at the Fmr1 gene results in severe disruption of the boundary between TADs. Our data uncover higher-order chromatin architecture as a new dimension in understanding the mechanistic basis of repeat expansion disorders.


Sign in / Sign up

Export Citation Format

Share Document