scholarly journals Altered prefrontal signaling during inhibitory control in a salient drug context in human cocaine addiction

Author(s):  
Ahmet O. Ceceli ◽  
Muhammad A. Parvaz ◽  
Sarah King ◽  
Matthew Schafer ◽  
Pias Malaker ◽  
...  

AbstractDrug addiction is characterized by impaired Response Inhibition and Salience Attribution (iRISA), where the salience of drug cues is postulated to overpower that of other reinforcers with a concomitant decrease in self-control. However, the neural underpinnings of the interaction between the salience of drug cues and inhibitory control in drug addiction remain unclear. We developed a novel stop-signal fMRI task where the stop-signal reaction time (SSRT—a classical inhibitory control measure) was tested under different salience conditions (modulated by drug, food, threat or neutral words) in individuals with cocaine use disorder (CUD; n=26) vs. demographically matched healthy control participants (HC; n=26). Despite similarities in drug cue-related SSRT and valence and arousal word ratings between groups, the dorsolateral prefrontal cortex (dlPFC) activity was diminished during the successful inhibition of drug versus food cues in CUD, and was correlated with lower frequency of recent use, lower craving, and longer abstinence (Z > 3.1, p < .05 corrected). Results suggest reduced involvement of cognitive control regions (e.g., dlPFC) during inhibitory control under a drug context, relative to an alternative reinforcer, in CUD. Supporting the iRISA model, these results elucidate the direct impact of drug-related cue-reactivity on the neural signature of inhibitory control in drug addiction.Significance statementExcessive salience attribution to drugs and related cues at the expense of nondrug reinforcers and cues and inhibitory control impairments are hallmark symptoms of drug addiction. Although these neuropsychological functions have been investigated independently, brain representations of their interaction are less clear. We illustrate that, despite matched behavioral performance and valence and arousal ratings, the dorsolateral prefrontal cortex—a key node of the cognitive control network also associated with craving—exhibits decreased signaling when successfully inhibiting responses to drug compared to nondrug (food) cues (words) in cocaine-addicted individuals. Modulating salience while taxing self-control permits the study of their combined impact, an ecologically valid examination of the addiction experience. Better understanding inhibitory control under drug cue-reactivity may refine targeted neuromodulatory interventions.

2021 ◽  
Vol 11 (4) ◽  
pp. 483
Author(s):  
Tatsunori Watanabe ◽  
Nami Kubo ◽  
Xiaoxiao Chen ◽  
Keisuke Yunoki ◽  
Takuya Matsumoto ◽  
...  

The purpose of this pilot study was to investigate whether transcranial static magnetic field stimulation (tSMS), which can modulate cortical excitability, would influence inhibitory control function when applied over the dorsolateral prefrontal cortex (DLPFC). Young healthy adults (n = 8, mean age ± SD = 24.4 ± 4.1, six females) received the following stimulations for 30 min on different days: (1) tSMS over the left DLPFC, (2) tSMS over the right DLPFC, and (3) sham stimulation over either the left or right DLPFC. The participants performed a Go/NoGo task before, immediately after, and 10 min after the stimulation. They were instructed to extend the right wrist in response to target stimuli. We recorded the electromyogram from the right wrist extensor muscles and analyzed erroneous responses (false alarm and missed target detection) and reaction times. As a result, 50% of the participants made erroneous responses, and there were five erroneous responses in total (0.003%). A series of statistical analyses revealed that tSMS did not affect the reaction time. These preliminary findings suggest the possibility that tSMS over the DLPFC is incapable of modulating inhibitory control and/or that the cognitive load imposed in this study was insufficient to detect the effect.


2007 ◽  
Vol 422 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Jose León-Carrión ◽  
Juan Francisco Martín-Rodríguez ◽  
Jesús Damas-López ◽  
Kambiz Pourrezai ◽  
Kurtulus Izzetoglu ◽  
...  

Author(s):  
Adam M. McNeill ◽  
Rebecca L. Monk ◽  
Adam W. Qureshi ◽  
Stergios Makris ◽  
Valantina Cazzato ◽  
...  

AbstractPrevious research indicates that following alcohol intoxication, activity in prefrontal cortices is reduced, linking to changes in associated cognitive processes, such as inhibitory control, attentional bias (AB), and craving. While these changes have been implicated in alcohol consumption behaviour, it has yet to be fully illuminated how these frontal regions and cognitive processes interact to govern alcohol consumption behaviour. The current preregistered study applied continuous theta burst transcranial magnetic stimulation (cTBS) to examine directly these relationships while removing the wider pharmacological effects of alcohol. A mixed design was implemented, with cTBS stimulation to right and left dorsolateral prefrontal cortex (DLPFC), the medial orbital frontal cortex (mOFC) and Vertex, with measures of inhibitory control, AB, and craving taken both pre- and post-stimulation. Ad libitum consumption was measured using a bogus taste task. Results suggest that rDLPFC stimulation impaired inhibitory control but did not significantly increase ad libitum consumption. However, lDLPFC stimulation heightened craving and increased consumption, with findings indicating that changes in craving partially mediated the relationship between cTBS stimulation of prefrontal regions and ad libitum consumption. Medial OFC stimulation and AB findings were inconclusive. Overall, results implicate the left DLPFC in the regulation of craving, which appears to be a prepotent cognitive mechanism by which alcohol consumption is driven and maintained.


2020 ◽  
Author(s):  
Cendri A. Hutcherson ◽  
Antonio Rangel ◽  
Anita Tusche

AbstractWhat role do cognitive control regions like the dorsolateral prefrontal cortex (dlPFC) play in normative behavior (e.g., generosity, healthy eating)? Some models suggest that dlPFC activation during normative choice reflects the use of control to overcome default hedonistic preferences. Here, we develop an alternative account, showing that an attribute-based neural drift diffusion model (anDDM) predicts trial-by-trial variation in dlPFC response across three fMRI studies and two self-control contexts (altruistic sacrifice and healthy eating). Using the anDDM to simulate a variety of self-control dilemmas generated a novel prediction: although dlPFC activity might typically increase for norm-consistent choices, deliberate self-regulation focused on normative goals should decrease or even reverse this pattern (i.e., greater dlPFC response for hedonic, self-interested choices). We confirmed these predictions in both altruistic and dietary choice contexts. Our results suggest that dlPFC’s response during normative choice may depend more on value-based evidence accumulation than inhibition of our baser instincts.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6550 ◽  
Author(s):  
Richard B. Lopez ◽  
Andrea L. Courtney ◽  
Dylan D. Wagner

Engaging in effortful self-control can sometimes impair people’s ability to resist subsequent temptations. Existing research has shown that when chronic dieters’ self-regulatory capacity is challenged by prior exertion of effort, they demonstrate disinhibited eating and altered patterns of brain activity when exposed to food cues. However, the relationship between brain activity during self-control exertion and subsequent food cue exposure remains unclear. In the present study, we investigated whether individual differences in recruitment of cognitive control regions during a difficult response inhibition task are associated with a failure to regulate neural responses to rewarding food cues in a subsequent task in a cohort of 27 female dieters. During self-control exertion, participants recruited regions commonly associated with inhibitory control, including dorsolateral prefrontal cortex (DLPFC). Those dieters with higher DLPFC activity during the initial self-control task showed an altered balance of food cue elicited activity in regions associated with reward and self-control, namely: greater reward-related activity and less recruitment of the frontoparietal control network. These findings suggest that some dieters may be more susceptible to the effects of self-control exertion than others and, whether due to limited capacity or changes in motivation, these dieters subsequently fail to engage control regions that may otherwise modulate activity associated with craving and reward.


2019 ◽  
Vol 14 (6) ◽  
pp. 2450-2463 ◽  
Author(s):  
Juan Fernandez-Ruiz ◽  
Rebecca M. Hakvoort Schwerdtfeger ◽  
Nadia Alahyane ◽  
Donald C. Brien ◽  
Brian C. Coe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document