scholarly journals Why can we detect lianas from space?

2021 ◽  
Author(s):  
Marco D. Visser ◽  
Matteo Detto ◽  
Felicien Meunier ◽  
Jin Wu ◽  
Boris Bongalov ◽  
...  

Lianas are found in virtually all tropical forests and have strong impacts on the forest carbon cycle by slowing tree growth, increasing tree mortality and arresting forest succession. In a few local studies, ecologists have successfully differentiated lianas from trees using various remote sensing platforms including satellite images. This demonstrates a potential to use remote sensing to investigate liana dynamics at spatio-temporal scales beyond what is currently possible with ground-based inventory censuses. However, why do liana-infested tree crowns and forest stands display distinct spectral signals? And is the spectral signal of lianas only locally unique or consistent across continental and global scales? Unfortunately, we are not yet able to answer these questions, and without such an understanding the limitations and caveats of large-scale application of automated classifiers cannot be understood. Here, we tackle the questions of why we can detect lianas from airborne and spaceborne remote sensing platforms. We identify whether a distinct spectral distribution exists for lianas, when compared to their tree hosts, at the leaf, canopy and stand scales in the solar spectrum (400 to 2500 nm). To do so, we compiled databases of (i) leaf reflectance spectra for over 4771 individual leaves of 571 species, (ii) fine-scale (~1m2) surface reflectance from 999 tree canopies characterized by different levels of liana infestation in Panama and Malaysia, and (iii) coarse-scale (>100 m2) surface reflectance from hundreds of hectares of heavily infested liana forest stands in French Guiana and Bolivia. Using these data, we find consistent spectral signal of liana-infested canopies across sites with a mean inter-site correlation of 89% (range 74-94%). However, as we find no consistent difference between liana and tree leaves, a distinct liana spectral signal appears to only manifests at the canopy and stand scales (>1m2). To better understand this signal, we implement mechanistic radiative transfer models capable of modeling the vertically stratificatied non-linear mixing of spectral signals intrinsic to lianas infestation of forest canopies. Next, we inversely fit the models to observed spectral signals of lianas at all scales to identify key biochemical or biophysical processes. We then corroborate our model results with field data on liana leaf chemistry and canopy structural properties. Our results suggest that a liana-specific spectral distribution arises due to the combination of cheaply constructed leaves and efficient light interception. A model experiment revealed that the spectral distribution was most sensitive to lower leaf and water mass per unit area, affecting the absorption of NIR and SWIR radiation, and a more planophile (flatter) leaf angle distribution. Finally, we evaluate the theoretical discernibility of lianas from trees and how this varies with remote sensing platforms and resolution. We end by discussing the potential, limitations and risks of applying automated classifiers to detect lianas from remotely sensed data at large scales.

2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


2020 ◽  
Vol 12 (18) ◽  
pp. 2909
Author(s):  
Benjamin D. Roth ◽  
Adam A. Goodenough ◽  
Scott D. Brown ◽  
Jan A. van Aardt ◽  
M. Grady Saunders ◽  
...  

Establishing linkages between light detection and ranging (lidar) data, produced from interrogating forest canopies, to the highly complex forest structures, composition, and traits that such forests contain, remains an extremely difficult problem. Radiative transfer models have been developed to help solve this problem and test new sensor platforms in a virtual environment. Many forest canopy studies include the major assumption of isotropic (Lambertian) reflecting and transmitting leaves or non-transmitting leaves. Here, we study when these assumptions may be valid and evaluate their associated impacts/effects on the lidar waveform, as well as its dependence on wavelength, lidar footprint, view angle, and leaf angle distribution (LAD), by using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) remote sensing radiative transfer simulation model. The largest effects of Lambertian assumptions on the waveform are observed at visible wavelengths, small footprints, and oblique interrogation angles relative to the mean leaf angle. For example, a 77% increase in return signal was observed with a configuration of a 550 nm wavelength, 10 cm footprint, and 45° interrogation angle to planophile leaves. These effects are attributed to (i) the bidirectional scattering distribution function (BSDF) becoming almost purely specular in the visible, (ii) small footprints having fewer leaf angles to integrate over, and (iii) oblique angles causing diminished backscatter due to forward scattering. Non-transmitting leaf assumptions have the greatest error for large footprints at near-infrared (NIR) wavelengths. Regardless of leaf angle distribution, all simulations with non-transmitting leaves with a 5 m footprint and 1064 nm wavelength saw around a 15% reduction in return signal. We attribute the signal reduction to the increased multiscatter contribution for larger fields of view, and increased transmission at NIR wavelengths. Armed with the knowledge from this study, researchers will be able to select appropriate sensor configurations to account for or limit BSDF effects in forest lidar data.


2021 ◽  
Vol 13 (5) ◽  
pp. 860
Author(s):  
Yi-Chun Lin ◽  
Tian Zhou ◽  
Taojun Wang ◽  
Melba Crawford ◽  
Ayman Habib

Remote sensing platforms have become an effective data acquisition tool for digital agriculture. Imaging sensors onboard unmanned aerial vehicles (UAVs) and tractors are providing unprecedented high-geometric-resolution data for several crop phenotyping activities (e.g., canopy cover estimation, plant localization, and flowering date identification). Among potential products, orthophotos play an important role in agricultural management. Traditional orthophoto generation strategies suffer from several artifacts (e.g., double mapping, excessive pixilation, and seamline distortions). The above problems are more pronounced when dealing with mid- to late-season imagery, which is often used for establishing flowering date (e.g., tassel and panicle detection for maize and sorghum crops, respectively). In response to these challenges, this paper introduces new strategies for generating orthophotos that are conducive to the straightforward detection of tassels and panicles. The orthophoto generation strategies are valid for both frame and push-broom imaging systems. The target function of these strategies is striking a balance between the improved visual appearance of tassels/panicles and their geolocation accuracy. The new strategies are based on generating a smooth digital surface model (DSM) that maintains the geolocation quality along the plant rows while reducing double mapping and pixilation artifacts. Moreover, seamline control strategies are applied to avoid having seamline distortions at locations where the tassels and panicles are expected. The quality of generated orthophotos is evaluated through visual inspection as well as quantitative assessment of the degree of similarity between the generated orthophotos and original images. Several experimental results from both UAV and ground platforms show that the proposed strategies do improve the visual quality of derived orthophotos while maintaining the geolocation accuracy at tassel/panicle locations.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1599
Author(s):  
Linshan Tan ◽  
Kaiyuan Zheng ◽  
Qiangqiang Zhao ◽  
Yanjuan Wu

Understanding the spatial and temporal variations of evapotranspiration (ET) is vital for water resources planning and management and drought monitoring. The development of a satellite remote sensing technique is described to provide insight into the estimation of ET at a regional scale. In this study, the Surface Energy Balance Algorithm for Land (SEBAL) was used to calculate the actual ET on a daily scale from Landsat-8 data and daily ground-based meteorological data in the upper reaches of Huaihe River on 20 November 2013, 16 April 2015 and 23 March 2018. In order to evaluate the performance of the SEBAL model, the daily SEBAL ET (ETSEBAL) was compared against the daily reference ET (ET0) from four theoretical methods: the Penman-Monteith (P-M), Irmak-Allen (I-A), the Turc, and Jensen-Haise (J-H) method, the ETMOD16 product from the MODerate Resolution Imaging Spectrometer (MOD16) and the ETVIC from Variable Infiltration Capacity Model (VIC). A linear regression equation and statistical indices were used to model performance evaluation. The results showed that the daily ETSEBAL correlated very well with the ET0, ETMOD16, and ETVIC, and bias between the ETSEBAL with them was less than 1.5%. In general, the SEBAL model could provide good estimations in daily ET over the study region. In addition, the spatial-temporal distribution of ETSEBAL was explored. The variation of ETSEBAL was significant in seasons with high values during the growth period of vegetation in March and April and low values in November. Spatially, the daily ETSEBAL values in the mountain area were much higher than those in the plain areas over the study region. The variability of ETSEBAL in this study area was positively correlated with elevation and negatively correlated with surface reflectance, which implies that elevation and surface reflectance are the important factors for predicting ET in this study area.


2021 ◽  
pp. 1053-1068
Author(s):  
Manfred Wendisch ◽  
André Ehrlich ◽  
Peter Pilewskie

2020 ◽  
Vol 10 (11) ◽  
pp. 3730 ◽  
Author(s):  
Josep M. Maso ◽  
Jordi Male ◽  
Joaquim Porte ◽  
Joan L. Pijoan ◽  
David Badia

Every year more interest is focused on high frequencies (HF) communications for remote sensing platforms due to their capacity to establish links of more than 250 km without a line of sight and due to them being a low-cost alternative to satellite communications. In this article, we study the ionospheric ordinary and extraordinary waves to improve the applications of near vertical incidence skywave (NVIS) on a single input multiple output (SIMO) configuration. To obtain the results, we established a link of 95 km to test the diversity combining of ordinary and extraordinary waves by using selection combining (SC) and equal-gain combining (EGC) on a remote sensing platform. The testbench is based on digital modulation transmissions with power transmission between 3 and 100 W. The results show us the main energy per bit to noise spectral density ratio (Eb/N0) and the bit error rate (BER) differences between ordinary and extraordinary waves, SC, and EGC. To conclude, diversity techniques show us a decrease of the power transmission need, allowing for the use of compact antennas and increasing battery autonomy. Furthermore, we present three different improvement options for NVIS SIMO remote sensing platforms depending on the requirements of bitrate, power consumption, and efficiency of communication.


Sign in / Sign up

Export Citation Format

Share Document