scholarly journals Gamma Entrainment Improves Synchronization Deficits in Dementia Patients

2021 ◽  
Author(s):  
Mojtaba Lahijanian ◽  
Hamid Aghajan ◽  
Zahra Vahabi ◽  
Arshia Afzal

AbstractNon-invasive gamma entrainment has shown promising results in alleviating cognitive symptoms of Alzheimer’s disease in mice and humans. In this study, we examine improvements in the synchronization characteristics of the brain’s oscillations induced by 40Hz auditory stimulation based on electroencephalography data recorded from a group of dementia patients. We observed that when the quality of entrainment surpasses a certain level, several indicators of brain synchronization significantly improve. Specifically, the entrained oscillatory activity maintains temporal phase stability in the frontal, parietal, and occipital regions, and persistent spatial phase coupling between them. In addition, notable theta-gamma phase-amplitude coupling is observed in these areas. Interestingly, a high theta power at rest predicts the quality of entrainment. We identify differentiating attributes of temporal/spatial synchronization and cross-frequency coupling in the data of two groups with entrained and non-entrained responses which point to enhanced network synchronization caused by entrainment and can explain its potential therapeutic effects.

Author(s):  
Jon López-Azcárate ◽  
María Jesús Nicolás ◽  
Ivan Cordon ◽  
Manuel Alegre ◽  
Miguel Valencia ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammed Abubaker ◽  
Wiam Al Qasem ◽  
Eugen Kvašňák

Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.


2012 ◽  
Vol 59 (1) ◽  
pp. 8-11 ◽  
Author(s):  
R. T. Canolty ◽  
C. F. Cadieu ◽  
K. Koepsell ◽  
R. T. Knight ◽  
J. M. Carmena

2018 ◽  
Author(s):  
Matías Cavelli ◽  
Santiago Castro-Zaballa ◽  
Joaquín Gonzalez ◽  
Daniel Rojas-Líbano ◽  
Nicolas Rubido ◽  
...  

AbstractRecent studies have shown that slow cortical potentials in archi-, paleo- and neocortex, can phase-lock with nasal respiration. In some of these areas, gamma activity (γ: 30-100 Hz) is also coupled to the animal’s respiration. It has been hypothesized that this interaction plays a role in coordinating distributed neural activity. In a similar way, inter-cortical interactions at γ frequency has been also associated as a binding mechanism by which the brain generates temporary opportunities necessary for implementing cognitive functions. The aim of the present study is to explore if nasal respiration entrains inter-cortical interactions at γ frequency.Six adult cats chronically prepared for electrographic recordings were employed in this study. Our results show that slow cortical respiratory potentials are present in several areas of the neocortex and olfactory bulb during wakefulness. Also, we found cross-frequency coupling between the respiratory phase and the amplitude of γ activity in all recorded areas. These oscillatory entrainments are independent of muscular activity, because are maintained during cataplexy induced by carbachol microinjection into the nucleus pontis oralis. Importantly, we observed that respiratory phase modulates the inter-cortical gamma coherence between neocortical pairs of electrodes during wakefulness. However, during NREM and REM sleep, breathing was unable to entrain the oscillatory activity, neither in the olfactory bulb nor in the neocortex. These results suggest a single unified phenomenon involving cross frequency coupling and long-range γ coherence across the neocortex. This fact could be related to a temporal binding process necessary for cognitive functions during wakefulness.


2017 ◽  
Author(s):  
Elliot Murphy ◽  
Antonio Benítez-Burraco

AbstractLanguage seemingly evolved from changes in brain anatomy and wiring. We argue that language evolution can be better understood if particular changes in phasal and cross-frequency coupling properties of neural oscillations, resulting in core features of language, are considered. Because we cannot track the oscillatory activity of the brain from extinct hominins, we used our current understanding of the language oscillogenome (that is, the set of genes responsible for basic aspects of the oscillatory activity relevant for language) to infer some properties of the Neanderthal oscillome. We have found that several candidates for the language oscillogenome show differences in their methylation patterns between Neanderthals and humans. We argue that differences in their expression levels could be informative of differences in cognitive functions important for language.


2020 ◽  
Author(s):  
Michael G Mariscal ◽  
Elizabeth Berry-Kravis ◽  
Joseph D Buxbaum ◽  
Lauren E Ethridge ◽  
Rajna Filip-Dhima ◽  
...  

Abstract Background Phelan-McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 gene. Individuals with PMS frequently present with intellectual disability, symptoms of autism spectrum disorder (ASD), and other neurodevelopmental challenges. Electroencephalography (EEG) can provide a window into network-level function in PMS. Methods Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically developing individuals (n = 15). We quantify oscillatory power, phase-amplitude coupling strength, and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward and feedback activity. Results We find individuals with PMS display increased phase bias (U = 3.841, p < 0.0005), predominantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of phase-amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as measured by the Repetitive Behavior Scales-Revised (Beta= 0.545, p= 0.011). Conclusions Increased phase bias suggests potential circuit-level mechanisms underlying phenotype in PMS, offering opportunities for back-translation of findings into animal models and targeting in clinical trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael. G. Mariscal ◽  
◽  
Elizabeth Berry-Kravis ◽  
Joseph D. Buxbaum ◽  
Lauren E. Ethridge ◽  
...  

Abstract Background Phelan-McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 gene. Individuals with PMS frequently present with intellectual disability, autism spectrum disorder, and other neurodevelopmental challenges. Electroencephalography (EEG) can provide a window into network-level function in PMS. Methods Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically developing individuals (n = 15). We quantify oscillatory power, alpha-gamma phase-amplitude coupling strength, and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward (bottom-up) and feedback (top-down) activity. Results We find individuals with PMS display increased alpha-gamma phase bias (U = 3.841, p < 0.0005), predominantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of alpha-gamma phase-amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as measured by the Repetitive Behavior Scales-Revised (Beta = 0.545, p = 0.011). Conclusions Increased phase bias suggests potential circuit-level mechanisms underlying phenotype in PMS, offering opportunities for back-translation of findings into animal models and targeting in clinical trials.


2019 ◽  
Vol 15 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Blanka Klímová ◽  
Kamil Kuča ◽  
Martin Vališ

Background: Due to the increase in life expectancies and the number of aging population worldwide, there is a rise of aging diseases, out of which the most common is dementia. Therefore, researchers all over the world look for another alternative ways that can improve cognitive competency and neuropsychiatric disorders of these people in order to assist them in maintaining the quality of their life and reducing the overall economic burden. One of the alternative approache seems to be non-pharmacological therapies, which are non-invasive, with minimum side effects and definitely less costly, such as a music therapy (MT). Objective: The purpose of this review study is to discuss benefits and limitations of music therapy in the management of dementia. Method: This was done by conducting a literature review of available sources found in the Web of Science, Scopus and MEDLINE. Results: The findings show that MT may be a promising non-invasive strategy with a long history of use, relatively favorable acceptance among patients with dementia, and its efficacy especially in the treatment of psycho-behavioral symptoms of dementia. Conclusion: However, more research should be conducted in the area of cognitive functioning, as well as on the mechanism of MT for dementia patients.


Sign in / Sign up

Export Citation Format

Share Document