scholarly journals Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine

Author(s):  
Leetah Senkpeil ◽  
Jyoti Bhardwaj ◽  
Morgan Little ◽  
Prasida Holla ◽  
Aditi Upadhye ◽  
...  

Baseline innate immune signatures can influence protective immunity following vaccination. Here, we used systems transcriptional analysis to assess the molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole sporozoite PfSPZ Vaccine in African infants. Innate immune activation and myeloid signatures at pre-vaccination baseline correlated with protection from Plasmodium falciparum infection in placebo controls, while the same signatures predicted susceptibility to infection among infants who received the highest and most protective dose of the PfSPZ Vaccine. Machine learning identified monocytes and an antigen presentation signature as pre-vaccination features predictive of malaria infection after highest-dose PfSPZ vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against malaria infection in mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data establish a dichotomous role of innate stimulation for malaria protection and induction of protective immunity of whole-sporozoite malaria vaccines.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria Pujantell ◽  
Roger Badia ◽  
Iván Galván-Femenía ◽  
Edurne Garcia-Vidal ◽  
Rafael de Cid ◽  
...  

AbstractInfection by human papillomavirus (HPV) alters the microenvironment of keratinocytes as a mechanism to evade the immune system. A-to-I editing by ADAR1 has been reported to regulate innate immunity in response to viral infections. Here, we evaluated the role of ADAR1 in HPV infection in vitro and in vivo. Innate immune activation was characterized in human keratinocyte cell lines constitutively infected or not with HPV. ADAR1 knockdown induced an innate immune response through enhanced expression of RIG-I-like receptors (RLR) signaling cascade, over-production of type-I IFNs and pro-inflammatory cytokines. ADAR1 knockdown enhanced expression of HPV proteins, a process dependent on innate immune function as no A-to-I editing could be identified in HPV transcripts. A genetic association study was performed in a cohort of HPV/HIV infected individuals followed for a median of 6 years (range 0.1–24). We identified the low frequency haplotype AACCAT significantly associated with recurrent HPV dysplasia, suggesting a role of ADAR1 in the outcome of HPV infection in HIV+ individuals. In summary, our results suggest that ADAR1-mediated innate immune activation may influence HPV disease outcome, therefore indicating that modification of innate immune effectors regulated by ADAR1 could be a therapeutic strategy against HPV infection.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-24-SCI-24
Author(s):  
Mark Shlomchik ◽  
Kevin Nickerson ◽  
Rebecca Sweet ◽  
Sean Christensen ◽  
Robin Herlands

Abstract Abstract SCI-24 While the paradigm that adaptive immunity to pathogens requires innate immune activation via pattern recognition receptors is well accepted, until recently how autoimmune responses are initiated and propagated has been less clear. In principle, it is less obvious how the requisite innate immune activation might occur. In 2002 landmark results demonstrated that autoreactive B cells could be activated in vitro by a self-Ags that contained both a BCR and a Toll-like receptor (TLR) ligand; the ability of endogenous chromatin antigens to engage TLR9, a DNA sensor, could explain how anti-DNA type antibodies were generated. We have extended these results in two ways. First, we have evaluated the roles of TLR9 and TLR7 (a ssRNA receptor) in vivo. We backcrossed TLR9 (DNA) and TLR7 (ssRNA) knockout alleles onto the MRL/lpr lupus-prone background. We found that TLR9 was required to generate the anti-chromatin response and TLR7 was required for anti-RNA associated responses. With respect to disease, TLR9 had an unexpected regulatory role: KO mice get more severe lupus, hypergammaglobulinemia, and die prematurely. Whereas, TLR7-deficient mice demonstrate ameliorated disease. This is surprising as TLR7 and TLR9 are highly homologous, are expressed in similar cells, and signal through the same pathway. To investigate the mechanism behind these differences, we have made TLR7 KO and TLR7/9 double KO MRL/lpr mice and I will discuss their phenotypes. In addition, we have used these animals to investigate B cell intrinsic roles for TLR9, and these data will be presented. These results suggest that innate immunity contributes to initiation and specificity of autoimmunity. In the second line of investigation, we have used a mouse that expresses an autoreactive BCR, specific for self-IgG (rheumatoid factor, RF) to investigate the roles of TLRs and T cells in the initial activation of these cells. Taken together, our results indicate that autoreactive B cells are activated in a TLR-dependent, T cell-independent fashion, but only by self molecules that provide a simultaneous BCR and TLR ligand. These cells then differentiate into autoantibody secreting plasmablasts and also are a vector for activating autoreactive T cells. Once this occurs, we propose that full-blown autoimmune disease is initiated and maintained by positive feedback between autoreactive B and T cells. The implications of this model for therapeutic approaches that target both B cells and TLRs will be discussed. Disclosures Shlomchik: Coley Pharmaceuticals: Patents & Royalties.


2005 ◽  
Vol 201 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Cevayir Coban ◽  
Ken J. Ishii ◽  
Taro Kawai ◽  
Hiroaki Hemmi ◽  
Shintaro Sato ◽  
...  

Malaria parasites within red blood cells digest host hemoglobin into a hydrophobic heme polymer, known as hemozoin (HZ), which is subsequently released into the blood stream and then captured by and concentrated in the reticulo-endothelial system. Accumulating evidence suggests that HZ is immunologically active, but the molecular mechanism(s) through which HZ modulates the innate immune system has not been elucidated. This work demonstrates that HZ purified from Plasmodium falciparum is a novel non-DNA ligand for Toll-like receptor (TLR)9. HZ activated innate immune responses in vivo and in vitro, resulting in the production of cytokines, chemokines, and up-regulation of costimulatory molecules. Such responses were severely impaired in TLR9−/− and myeloid differentiation factor 88 (MyD88)−/−, but not in TLR2, TLR4, TLR7, or Toll/interleukin 1 receptor domain–containing adaptor-inducing interferon β−/− mice. Synthetic HZ, which is free of the other contaminants, also activated innate immune responses in vivo in a TLR9-dependent manner. Chloroquine (CQ), an antimalarial drug, abrogated HZ-induced cytokine production. These data suggest that TLR9-mediated, MyD88-dependent, and CQ-sensitive innate immune activation by HZ may play an important role in malaria parasite–host interactions.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 34
Author(s):  
Maria Pujantell ◽  
Eva Riveira-Muñoz ◽  
Edurne García-Vidal ◽  
Lucía Gutiérrez-Chamorro ◽  
Roger Badia ◽  
...  

Viral infection induces innate intracellular antiviral defenses, aimed at restricting virus replication and spread. Therefore, understanding the role and function of innate immune modulators can help to establish novel strategies for viral control. Here, we explore the role of ADAR1 as a regulator of the HIV, HCV, and HPV infections, both in vitro and in vivo, in a genetic association study. Depletion of ADAR1 induced innate immune activation, observed by a significant increase in IFNB1 mRNA and CXCL10 expression. Further characterization of ADAR1 knockdown also showed upregulation of the RNA sensors MDA5 and RIG-I, increased IRF7 expression, and phosphorylation of STAT1. ADAR1 deficiency had differential effects depending on the virus tested: siADAR1 cells showed a significant reduction in HIV-1 infection, whereas ADAR1 knockdown suggested a proviral role in HCV and HPV infections. In addition, genetic association studies were performed in a cohort of 155 HCV/HIV individuals with chronic coinfection, and a cohort of 173 HPV/HIV-infected individuals was followed for a median of six years (range 0.1–24). Polymorphisms within the ADAR1 gene were found to be significantly associated with poor clinical outcome of HCV therapy and advanced liver fibrosis in a cohort of HCV/HIV-1-coinfected patients. Moreover, we identified the low-frequency haplotype AACCAT to be significantly associated with recurrent HPV dysplasia, suggesting a role for ADAR1 in the outcome of HPV infection in HIV+ individuals. In conclusion, we show that ADAR1 regulates innate immune activation and plays a key role in susceptibility to viral infections by either limiting or enhancing viral replication. Overall, ADAR1 could be a potential target for designing immune-modulating therapeutic strategies.


2021 ◽  
Vol 29 (4) ◽  
pp. 1365-1366
Author(s):  
Robert Frederickson ◽  
Roland W. Herzog

Sign in / Sign up

Export Citation Format

Share Document