scholarly journals Categorical encoding of speech sounds: beyond auditory cortices

2021 ◽  
Author(s):  
Basil C Preisig ◽  
Lars Riecke ◽  
Alexis Hervais-Adelman

What processes lead to categorical perception of speech sounds? Investigation of this question is hampered by the fact that categorical speech perception is normally confounded by acoustic differences in the stimulus. By using ambiguous sounds, however, it is possible to dissociate acoustic from perceptual stimulus representations. We used a binaural integration task, where the inputs to the two ears were complementary so that phonemic identity emerged from their integration into a single percept. Twenty-seven normally hearing individuals took part in an fMRI study in which they were presented with an ambiguous syllable (intermediate between /da/ and /ga/) in one ear and with a meaning-differentiating acoustic feature (third formant) in the other ear. Multi-voxel pattern searchlight analysis was used to identify brain areas that consistently differentiated between response patterns associated with different syllable reports. By comparing responses to different stimuli with identical syllable reports and identical stimuli with different syllable reports, we disambiguated whether these regions primarily differentiated the acoustics of the stimuli or the syllable report. We found that BOLD activity patterns in the left anterior insula (AI), the left supplementary motor cortex, the left ventral motor cortex and the right motor and somatosensory cortex (M1/S1) represent listeners' syllable report irrespective of stimulus acoustics. The same areas have been previously implicated in decision-making (AI), response selection (SMA), and response initiation and feedback (M1/S1). Our results indicate that the emergence of categorical speech sounds implicates decision-making mechanisms and auditory-motor transformations acting on sensory inputs.

1946 ◽  
Vol 11 (1) ◽  
pp. 2-2

In the article “Infant Speech Sounds and Intelligence” by Orvis C. Irwin and Han Piao Chen, in the December 1945 issue of the Journal, the paragraph which begins at the bottom of the left hand column on page 295 should have been placed immediately below the first paragraph at the top of the right hand column on page 296. To the authors we express our sincere apologies.


2000 ◽  
Vol 5 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Ronny Swain

The paper describes the development of the 1998 revision of the Psychological Society of Ireland's Code of Professional Ethics. The Code incorporates the European Meta-Code of Ethics and an ethical decision-making procedure borrowed from the Canadian Psychological Association. An example using the procedure is presented. To aid decision making, a classification of different kinds of stakeholder (i.e., interested party) affected by ethical decisions is offered. The author contends (1) that psychologists should assert the right, which is an important aspect of professional autonomy, to make discretionary judgments, (2) that to be justified in doing so they need to educate themselves in sound and deliberative judgment, and (3) that the process is facilitated by a code such as the Irish one, which emphasizes ethical awareness and decision making. The need for awareness and judgment is underlined by the variability in the ethical codes of different organizations and different European states: in such a context, codes should be used as broad yardsticks, rather than precise templates.


2018 ◽  
Vol 9 (1) ◽  
pp. 59-66
Author(s):  
Zsuzsanna Gödör ◽  
Georgina Szabó

Abstract As they say, money can’t buy happiness. However, the lack of it can make people’s lives much harder. From the moment we open our first bank account, we have to make lots of financial decisions in our life. Should I save some money or should I spend it? Is it a good idea to ask for a loan? How to invest my money? When we make such decisions, unfortunately we sometimes make mistakes, too. In this study, we selected seven common decision making biases - anchoring and adjustment, overconfidence, high optimism, the law of small numbers, framing effect, disposition effect and gambler’s fallacy – and tested them on the Hungarian population via an online survey. In the focus of our study was the question whether the presence of economic knowledge helps people make better decisions? The decision making biases found in literature mostly appeared in the sample as well. It proves that people do apply them when making decisions and in certain cases this could result in serious and costly errors. That’s why it would be absolutely important for people to learn about them, thus increasing their awareness and attention when making decisions. Furthermore, in our research we did find some connection between decisions and the knowledge of economics, people with some knowledge of economics opted for the better solution in bigger proportion


1993 ◽  
Vol 3 ◽  
pp. 33-49
Author(s):  
Sebastian (Nello) Raciti

Parents have the right to participate in the educational planning for their child with a disability, however they often need assistance when interacting with professionals to ensure the best programs for their children. Professionals also require guidelines and opportunities to develop appropriate communication skills when interacting with other professionals and parents. This paper investigates the level of participatory decision-making which exists between parents and professionals, and professionals amongst themselves. The present thrust for including children with a disability in mainstream schools is used as the contextual setting for this investigation. Furthermore, the author presents an intervention plan based on the Collaborative Consultation Model to enhance the participatory decision-making skills of parents and professionals at the local school level.


2020 ◽  
Vol 11 (1) ◽  
pp. 18-50 ◽  
Author(s):  
Maja BRKAN ◽  
Grégory BONNET

Understanding of the causes and correlations for algorithmic decisions is currently one of the major challenges of computer science, addressed under an umbrella term “explainable AI (XAI)”. Being able to explain an AI-based system may help to make algorithmic decisions more satisfying and acceptable, to better control and update AI-based systems in case of failure, to build more accurate models, and to discover new knowledge directly or indirectly. On the legal side, the question whether the General Data Protection Regulation (GDPR) provides data subjects with the right to explanation in case of automated decision-making has equally been the subject of a heated doctrinal debate. While arguing that the right to explanation in the GDPR should be a result of interpretative analysis of several GDPR provisions jointly, the authors move this debate forward by discussing the technical and legal feasibility of the explanation of algorithmic decisions. Legal limits, in particular the secrecy of algorithms, as well as technical obstacles could potentially obstruct the practical implementation of this right. By adopting an interdisciplinary approach, the authors explore not only whether it is possible to translate the EU legal requirements for an explanation into the actual machine learning decision-making, but also whether those limitations can shape the way the legal right is used in practice.


2020 ◽  
Vol 11 ◽  
Author(s):  
Elena Laura Georgescu Margarint ◽  
Ioana Antoaneta Georgescu ◽  
Carmen Denise Mihaela Zahiu ◽  
Stefan-Alexandru Tirlea ◽  
Alexandru Rǎzvan Şteopoaie ◽  
...  

The execution of voluntary muscular activity is controlled by the primary motor cortex, together with the cerebellum and basal ganglia. The synchronization of neural activity in the intracortical network is crucial for the regulation of movements. In certain motor diseases, such as dystonia, this synchrony can be altered in any node of the cerebello-cortical network. Questions remain about how the cerebellum influences the motor cortex and interhemispheric communication. This research aims to study the interhemispheric cortical communication between the motor cortices during dystonia, a neurological movement syndrome consisting of sustained or repetitive involuntary muscle contractions. We pharmacologically induced lateralized dystonia to adult male albino mice by administering low doses of kainic acid on the left cerebellar hemisphere. Using electrocorticography and electromyography, we investigated the power spectral densities, cortico-muscular, and interhemispheric coherence between the right and left motor cortices, before and during dystonia, for five consecutive days. Mice displayed lateralized abnormal motor signs, a reduced general locomotor activity, and a high score of dystonia. The results showed a progressive interhemispheric coherence decrease in low-frequency bands (delta, theta, beta) during the first 3 days. The cortico-muscular coherence of the affected side had a significant increase in gamma bands on days 3 and 4. In conclusion, lateralized cerebellar dysfunction during dystonia was associated with a loss of connectivity in the motor cortices, suggesting a possible cortical compensation to the initial disturbances induced by cerebellar left hemisphere kainate activation by blocking the propagation of abnormal oscillations to the healthy hemisphere. However, the cerebellum is part of several overly complex circuits, therefore other mechanisms can still be involved in this phenomenon.


2005 ◽  
Vol 93 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Jen-Tse Chen ◽  
Yung-Yang Lin ◽  
Din-E Shan ◽  
Zin-An Wu ◽  
Mark Hallett ◽  
...  

Transcranial magnetic stimulation (TMS) of the motor cortex can interrupt voluntary contralateral rhythmic limb movements. Using the method of “resetting index” (RI), our study investigated the TMS effect on different types of bimanual movements. Six normal subjects participated. For unimanual movement, each subject tapped either the right or left index finger at a comfortable rate. For bimanual movement, index fingers of both hands tapped in the same (in-phase) direction or in the opposite (antiphase) direction. TMS was applied to each hemisphere separately at various intensities from 0.5 to 1.5 times motor threshold (MT). TMS interruption of rhythm was quantified by RI. For the unimanual movements, TMS disrupted both contralateral and ipsilateral rhythmic hand movements, although the effect was much less in the ipsilateral hand. For the bimanual in-phase task, TMS could simultaneously reset the rhythmic movements of both hands, but the effect on the contralateral hand was less and the effect on the ipsilateral hand was more compared with the unimanual tasks. Similar effects were seen from right and left hemisphere stimulation. TMS had little effect on the bimanual antiphase task. The equal effect of right and left hemisphere stimulation indicates that neither motor cortex is dominant for simple bimanual in-phase movement. The smaller influence of contralateral stimulation and the greater effect of ipsilateral stimulation during bimanual in-phase movement compared with unimanual movement suggest hemispheric coupling. The antiphase movements were resistant to TMS disruption, and this suggests that control of rhythm differs in the 2 tasks. TMS produced a transient asynchrony of movements on the 2 sides, indicating that both motor cortices might be downstream of the clocking command or that the clocking is a consequence of the 2 hemispheres communicating equally with each other.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meir Meshulam ◽  
Liat Hasenfratz ◽  
Hanna Hillman ◽  
Yun-Fei Liu ◽  
Mai Nguyen ◽  
...  

AbstractDespite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.


Sign in / Sign up

Export Citation Format

Share Document