scholarly journals Deep-Learning Super-Resolution Microscopy Reveals Nanometer-Scale Intracellular Dynamics at the Millisecond Temporal Resolution

2021 ◽  
Author(s):  
Rong Chen ◽  
Xiao Tang ◽  
Zeyu Shen ◽  
Yusheng Shen ◽  
Tiantian Li ◽  
...  

AbstractSingle-molecule localization microscopy (SMLM) can be used to resolve subcellular structures and achieve a tenfold improvement in spatial resolution compared to that obtained by conventional fluorescence microscopy. However, the separation of single-molecule fluorescence events in thousands of frames dramatically increases the image acquisition time and phototoxicity, impeding the observation of instantaneous intracellular dynamics. Based on deep learning networks, we develop a single-frame super-resolution microscopy (SFSRM) approach that reconstructs a super-resolution image from a single frame of a diffraction-limited image to support live-cell super-resolution imaging at a ∼20 nm spatial resolution and a temporal resolution of up to 10 ms over thousands of time points. We demonstrate that our SFSRM method enables the visualization of the dynamics of vesicle transport at a millisecond temporal resolution in the dense and vibrant microtubule network in live cells. Moreover, the well-trained network model can be used with different live-cell imaging systems, such as confocal and light-sheet microscopes, making super-resolution microscopy accessible to nonexperts.

Cell Research ◽  
2016 ◽  
Vol 27 (5) ◽  
pp. 713-716 ◽  
Author(s):  
Fan Xu ◽  
Mingshu Zhang ◽  
Wenting He ◽  
Renmin Han ◽  
Fudong Xue ◽  
...  

Cell Research ◽  
2016 ◽  
Author(s):  
Fan Xu ◽  
Mingshu Zhang ◽  
Wenting He ◽  
Renmin Han ◽  
Fudong Xue ◽  
...  

2021 ◽  
Author(s):  
Nicolas Lardon ◽  
Lu Wang ◽  
Aline Tschanz ◽  
Philipp Hoess ◽  
Mai Tran ◽  
...  

Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a non-fluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, which poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell stimulated emission depletion (STED) microscopy, or into a spontaneously blinking dye for single molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle S. Frei ◽  
Philipp Hoess ◽  
Marko Lampe ◽  
Bianca Nijmeijer ◽  
Moritz Kueblbeck ◽  
...  

Abstract Photoactivatable fluorophores are important for single-particle tracking and super-resolution microscopy. Here we present a photoactivatable fluorophore that forms a bright silicon rhodamine derivative through a light-dependent protonation. In contrast to other photoactivatable fluorophores, no caging groups are required, nor are there any undesired side-products released. Using this photoactivatable fluorophore, we create probes for HaloTag and actin for live-cell single-molecule localization microscopy and single-particle tracking experiments. The unusual mechanism of photoactivation and the fluorophore’s outstanding spectroscopic properties make it a powerful tool for live-cell super-resolution microscopy.


2020 ◽  
Author(s):  
Pedro M. Pereira ◽  
Nils Gustafsson ◽  
Mark Marsh ◽  
Musa M. Mhlanga ◽  
Ricardo Henriques

Localization based super-resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non-fluorescent states. These transitions are commonly regulated by high-intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single-molecule self-quenching as a mechanism to generate spontaneous photoswitching independent of illumination. To demonstrate this principle, we developed a new class of DNA-based open-source Super-Resolution probes named Super-Beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live-cell friendly Super-Resolution Microscopy without high-illumination or toxic imaging buffers is revealed by imaging Interferon Inducible Transmembrane proteins (IFITMs) at sub-100nm resolutions.


Author(s):  
Kalina L. Tosheva ◽  
Yue Yuan ◽  
Pedro M. Pereira ◽  
Siân Culley ◽  
Ricardo Henriques

Super-Resolution Microscopy enables non-invasive, molecule-specific imaging of the internal structure and dynamics of cells with sub-diffraction limit spatial resolution. One of its major limitations is the requirement for high-intensity illumination, generating considerable cellular phototoxicity. This factor considerably limits the capacity for live-cell observations, particularly for extended periods of time. Here, we overview new developments in hardware, software and probe chemistry aiming to reduce phototoxicity. Additionally, we discuss how the choice of biological model and sample environment impacts the capacity for live-cell observations.


2019 ◽  
Author(s):  
Michelle S. Frei ◽  
Philipp Hoess ◽  
Marko Lampe ◽  
Bianca Nijmeijer ◽  
Moritz Kueblbeck ◽  
...  

AbstractWe present a new type of photoactivatable fluorophore that forms a bright silicon rhodamine derivative through a light-dependent isomerization followed by protonation. In contrast to other photoactivatable fluorophores, no caging groups are required, nor are there any undesired side-products released. Using this photoactivatable fluorophore, we created probes for HaloTag and actin for live-cell single-molecule localization microscopy and single-particle tracking experiments. The unusual mechanism of photoactivation and the fluorophore’s outstanding spectroscopic properties make it a powerful tool for live-cell super-resolution microscopy.


Author(s):  
Philipp Werther ◽  
Klaus Yserentant ◽  
Felix Braun ◽  
Kristin Grußmayer ◽  
Vytautas Navikas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document