scholarly journals Demographic model and biological adaptation inferred from the genome-wide SNP data reveal tripartite origins of southernmost Chinese Huis

2021 ◽  
Author(s):  
Guanglin He ◽  
Zhi-Quan Fan ◽  
Xing Zou ◽  
Xiaohui Deng ◽  
Hui-Yuan Yeh ◽  
...  

The culturally unique Sanya Hui (SYH) people are regarded as the descendants of ancient Cham people in Central Vietnam (CV) and exhibit a scenario of complex migration and admixture history, who were likely to first migrate from Central and South Asia (CSA) to CV and then to South Hainan and finally assimilated with indigenous populations and resided in the tropical island environments since then. A long-standing hypothesis posits that SYH derives from different genetic and cultural origins, which hypothesizes that SYH people are different from the genetically attested admixture history of northern Hui people possessing major Han-related ancestry and minor western Eurasian ancestry. However, the effect of the cultural admixture from CSA and East Asia (EA) on the genetic admixture of SYH people remains unclear. Here, we reported the first batch of genome-wide SNP data from 94 SYH people from Hainan and comprehensively characterized their genetic structure, origin, and admixture history. Our results found that SYH people were genetically different from the northern Chinese Hui people and harbored a close genomic affinity with indigenous Vietnamese but a distinct relationship with Cham, which confirmed the hypothesis of documented recent historical migration from CV and assimilation with Hainan indigenous people. The fitted admixture models and reconstructed demographic frameworks revealed an additional influx of CSA and EA ancestries during the historical period, consisting of the frequent cultural communication along the Southern Maritime Silk Road and extensive interaction with EA. Analyses focused on natural-selected signatures of SYH people revealed a similar pattern with mainland East Asians, which further confirmed the possibility of admixture-induced biological adaptation of island environments. Generally, three genetically attested ancestries from CV, EA, and CSA in modern SYH people supported their tripartite model of genomic origins.

Author(s):  
Haige Han ◽  
Kenneth Bryan ◽  
Wunierfu Shiraigol ◽  
Dongyi Bai ◽  
Yiping Zhao ◽  
...  

Abstract The Mongolian horse is one of the oldest extant horse populations and although domesticated, most animals are free-ranging and experience minimal human intervention. As an ancient population originating in one of the key domestication centers, the Mongolian horse may play a key role in understanding the origins and recent evolutionary history of horses. Here we describe an analysis of high-density genome-wide single-nucleotide polymorphism (SNP) data in 40 globally dispersed horse populations (n = 895). In particular, we have focused on new results from Chinese Mongolian horses (n = 100) that represent 5 distinct populations. These animals were genotyped for 670K SNPs and the data were analyzed in conjunction with 35K SNP data for 35 distinct breeds. Analyses of these integrated SNP data sets demonstrated that the Chinese Mongolian populations were genetically distinct from other modern horse populations. In addition, compared to other domestic horse breeds, the Chinese Mongolian horse populations exhibited relatively high genomic diversity. These results suggest that, in genetic terms, extant Chinese Mongolian horses may be the most similar modern populations to the animals originally domesticated in this region of Asia. Chinese Mongolian horse populations may therefore retain ancestral genetic variants from the earliest domesticates. Further genomic characterization of these populations in conjunction with archaeogenetic sequence data should be prioritized for understanding recent horse evolution and the domestication process that has led to the wealth of diversity observed in modern global horse breeds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Humberto García-Ortiz ◽  
Francisco Barajas-Olmos ◽  
Cecilia Contreras-Cubas ◽  
Miguel Ángel Cid-Soto ◽  
Emilio J. Córdova ◽  
...  

AbstractThe genetic makeup of Indigenous populations inhabiting Mexico has been strongly influenced by geography and demographic history. Here, we perform a genome-wide analysis of 716 newly genotyped individuals from 60 of the 68 recognized ethnic groups in Mexico. We show that the genetic structure of these populations is strongly influenced by geography, and our demographic reconstructions suggest a decline in the population size of all tested populations in the last 15–30 generations. We find evidence that Aridoamerican and Mesoamerican populations diverged roughly 4–9.9 ka, around the time when sedentary farming started in Mesoamerica. Comparisons with ancient genomes indicate that the Upward Sun River 1 (USR1) individual is an outgroup to Mexican/South American Indigenous populations, whereas Anzick-1 was more closely related to Mesoamerican/South American populations than to those from Aridoamerica, showing an even more complex history of divergence than recognized so far.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyun Bin ◽  
Rui Wang ◽  
Youyi Huang ◽  
Rongyao Wei ◽  
Kongyang Zhu ◽  
...  

Sui people, which belong to the Tai-Kadai-speaking family, remain poorly characterized due to a lack of genome-wide data. To infer the fine-scale population genetic structure and putative genetic sources of the Sui people, we genotyped 498,655 genome-wide single-nucleotide polymorphisms (SNPs) using SNP arrays in 68 Sui individuals from seven indigenous populations in Guizhou province and Guangxi Zhuang Autonomous Region in Southwest China and co-analyzed with available East Asians via a series of population genetic methods including principal component analysis (PCA), ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave, and qpAdm. Our results revealed that Guangxi and Guizhou Sui people showed a strong genetic affinity with populations from southern China and Southeast Asia, especially Tai-Kadai- and Hmong-Mien-speaking populations as well as ancient Iron Age Taiwan Hanben, Gongguan individuals supporting the hypothesis that Sui people came from southern China originally. The indigenous Tai-Kadai-related ancestry (represented by Li), Northern East Asian-related ancestry, and Hmong-Mien-related lineage contributed to the formation processes of the Sui people. We identified the genetic substructure within Sui groups: Guizhou Sui people were relatively homogeneous and possessed similar genetic profiles with neighboring Tai-Kadai-related populations, such as Maonan. While Sui people in Yizhou and Huanjiang of Guangxi might receive unique, additional gene flow from Hmong-Mien-speaking populations and Northern East Asians, respectively, after the divergence within other Sui populations. Sui people could be modeled as the admixture of ancient Yellow River Basin farmer-related ancestry (36.2–54.7%) and ancient coastal Southeast Asian-related ancestry (45.3–63.8%). We also identified the potential positive selection signals related to the disease susceptibility in Sui people via integrated haplotype score (iHS) and number of segregating sites by length (nSL) scores. These genomic findings provided new insights into the demographic history of Tai-Kadai-speaking Sui people and their interaction with neighboring populations in Southern China.


2012 ◽  
Vol 29 (12) ◽  
pp. 3653-3667 ◽  
Author(s):  
Christoph Theunert ◽  
Kun Tang ◽  
Michael Lachmann ◽  
Sile Hu ◽  
Mark Stoneking

2016 ◽  
Vol 113 (6) ◽  
pp. 1594-1599 ◽  
Author(s):  
Analabha Basu ◽  
Neeta Sarkar-Roy ◽  
Partha P. Majumder

India, occupying the center stage of Paleolithic and Neolithic migrations, has been underrepresented in genome-wide studies of variation. Systematic analysis of genome-wide data, using multiple robust statistical methods, on (i) 367 unrelated individuals drawn from 18 mainland and 2 island (Andaman and Nicobar Islands) populations selected to represent geographic, linguistic, and ethnic diversities, and (ii) individuals from populations represented in the Human Genome Diversity Panel (HGDP), reveal four major ancestries in mainland India. This contrasts with an earlier inference of two ancestries based on limited population sampling. A distinct ancestry of the populations of Andaman archipelago was identified and found to be coancestral to Oceanic populations. Analysis of ancestral haplotype blocks revealed that extant mainland populations (i) admixed widely irrespective of ancestry, although admixtures between populations was not always symmetric, and (ii) this practice was rapidly replaced by endogamy about 70 generations ago, among upper castes and Indo-European speakers predominantly. This estimated time coincides with the historical period of formulation and adoption of sociocultural norms restricting intermarriage in large social strata. A similar replacement observed among tribal populations was temporally less uniform.


2021 ◽  
pp. 3-24
Author(s):  
Chunming Wu

AbstractDespite being a coastal country located to the west of the Pacific, ancient China essentially had a continental cultural pattern, with its vision turned toward the mainland, and a geopolitical order of land-sea interactions of ancient civilization centered on the Central Plains (Zhongyuan, 中原) around the middle and lower reaches of the Yellow River and surrounded by “Peripheral Barbarians in Four Directions” (四方蛮夷) within “Four Seas” (四海). Nevertheless, these peripheral maritime “barbarian” Yi (夷) and Yue (越) and the oversea maritime Fan (番) had been active and developed along the southeast coast of China at the edge of these “Four Directions”. Here they had objectively played an important and indispensable role in the ancient history of Chinese civilization, from the native seafaring tradition of “being good at using boats” in the prehistoric and early historical period to the medieval and late historical “Maritime Silk Road” from Han (汉) to Tang (唐) dynasties.


2019 ◽  
Author(s):  
Dang Liu ◽  
Nguyen Thuy Duong ◽  
Nguyen Dang Ton ◽  
Nguyen Van Phong ◽  
Brigitte Pakendorf ◽  
...  

AbstractVietnam features extensive ethnolinguistic diversity and occupies a key position in Mainland Southeast Asia (MSEA). Yet, the genetic diversity of Vietnam remains relatively unexplored, especially with genome-wide data, because previous studies have focused mainly on the majority Kinh group. Here we analyze newly-generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA. In addition to analyzing the allele and haplotype sharing within the Vietnamese groups, we incorporate published data from both nearby modern populations and ancient samples for comparison. We find that the Vietnamese ethnolinguistic groups harbor multiple sources of genetic diversity that are associated with heterogeneous ancestry sharing profiles in each language family. However, linguistic diversity does not completely match genetic diversity; there have been extensive interactions between the Hmong-Mien and Tai-Kadai groups, and a likely case of cultural diffusion in which some Austro-Asiatic groups shifted to Austronesian languages. Overall, our results highlight the importance of genome-wide data from dense sampling of ethnolinguistic groups in providing new insights into the genetic diversity and history of an ethnolinguistically-diverse region, such as Vietnam.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengge Wang ◽  
Didi Yuan ◽  
Xing Zou ◽  
Zheng Wang ◽  
Hui-Yuan Yeh ◽  
...  

The evolutionary and admixture history of Han Chinese have been widely discussed via traditional autosomal and uniparental genetic markers [e.g., short tandem repeats, low-density single nucleotide polymorphisms). However, their fine-scale genetic landscapes (admixture scenarios and natural selection signatures) based on the high-density allele/haplotype sharing patterns have not been deeply characterized. Here, we collected and generated genome-wide data of 50 Han Chinese individuals from four populations in Guizhou Province, one of the most ethnolinguistically diverse regions, and merged it with over 3,000 publicly available modern and ancient Eurasians to describe the genetic origin and population admixture history of Guizhou Hans and their neighbors. PCA and ADMIXTURE results showed that the studied four populations were homogeneous and grouped closely to central East Asians. Genetic homogeneity within Guizhou populations was further confirmed via the observed strong genetic affinity with inland Hmong-Mien people through the observed genetic clade in Fst and outgroup f3/f4-statistics. qpGraph-based phylogenies and f4-based demographic models illuminated that Guizhou Hans were well fitted via the admixture of ancient Yellow River Millet farmers related to Lajia people and southern Yangtze River farmers related to Hanben people. Further ChromoPainter-based chromosome painting profiles and GLOBETROTTER-based admixture signatures confirmed the two best source matches for southwestern Hans, respectively, from northern Shaanxi Hans and southern indigenes with variable mixture proportions in the historical period. Further three-way admixture models revealed larger genetic contributions from coastal southern East Asians into Guizhou Hans compared with the proposed inland ancient source from mainland Southeast Asia. We also identified candidate loci (e.g., MTUS2, NOTCH4, EDAR, ADH1B, and ABCG2) with strong natural selection signatures in Guizhou Hans via iHS, nSL, and ihh, which were associated with the susceptibility of the multiple complex diseases, morphology formation, alcohol and lipid metabolism. Generally, we provided a case and ideal strategy to reconstruct the detailed demographic evolutionary history of Guizhou Hans, which provided new insights into the fine-scale genomic formation of one ethnolinguistically specific targeted population from the comprehensive perspectives of the shared unlinked alleles, linked haplotypes, and paternal and maternal lineages.


Sign in / Sign up

Export Citation Format

Share Document