scholarly journals Investigation of the futalosine pathway for menaquinone biosynthesis as a novel target in the inhibition of Chlamydia trachomatis infection

2021 ◽  
Author(s):  
Brianne M. Dudiak ◽  
Tri M. Nguyen ◽  
David Needham ◽  
Taylor C. Outlaw ◽  
Dewey G. McCafferty

Chlamydia trachomatis, an obligate intracellular bacterium with limited metabolic capabilities, possesses the futalosine pathway for menaquinone biosynthesis. Futalosine pathway enzymes have promise as narrow spectrum targets, but the activity and essentiality of chlamydial menaquinone biosynthesis have yet to be established. In this work, menaquinone-7 (MK-7) was identified as a C. trachomatis-produced quinone through LC-MS/MS. An immunofluorescence-based assay revealed that treatment of C. trachomatis-infected HeLa cells with futalosine pathway inhibitor docosahexaenoic acid (DHA) reduced inclusion number, inclusion size, and infectious progeny. Supplementation with MK-7 nanoparticles rescued the effect of DHA on inclusion number, indicating that the futalosine pathway is a target of DHA in this system. These results open the door for menaquinone biosynthesis inhibitors to be pursued in antichlamydial development.

2020 ◽  
Author(s):  
Katherine E. Bowden ◽  
Sandeep J. Joseph ◽  
John Cartee ◽  
Noa Ziklo ◽  
Damien Danavall ◽  
...  

AbstractChlamydia trachomatis is the most prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. U.S. cases have been steadily increasing for more than a decade in both the urogenital tract and rectum. C. trachomatis is an obligate intracellular bacterium that is not easily cultured, limiting the capacity for genome studies to understand strain diversity and emergence among various patient populations globally. While Agilent SureSelectXT target-enrichment RNA bait libraries have been developed for whole-genome enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival and rectal samples, efficiencies are only 60-80% for ≥95-100% genome coverage. We therefore re-designed and expanded the RNA bait library to augment enrichment of the organism from clinical samples to improve efficiency. We describe the expanded library, the limit of detection for C. trachomatis genome copy input, and the 100% efficiency and high-resolution of generated genomes where genomic recombination among paired vaginal and rectal specimens from four patients was identified. This workflow provides a robust approach for discerning genomic diversity and advancing our understanding of the molecular epidemiology of contemporary C. trachomatis STIs across sample types, among geographic populations, sexual networks, and outbreaks associated with proctitis/proctocolitis among women and men who have sex with men.ImportanceChlamydia trachomatis is an obligate intracellular bacterium that is not easily cultured, and there is limited information on rectal C. trachomatis transmission and its impact on morbidity. To improve efficiency of previous studies involving whole genome target enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal specimens, we expanded the RNA bait library to augment enrichment of the organism from clinical samples. We demonstrate an increased efficiency in the percentage of reads mapping to C. trachomatis. We show the new system is sensitive for near identical genomes of C. trachomatis from two body sites in four women. Further, we provide a robust genomic epidemiologic approach to advance our understanding of C. trachomatis strains causing ocular, urogenital and rectal infections, and to explore geo-sexual networks, outbreaks of colorectal infections among women and men who have sex with men, and the role of these strains in morbidity.


2002 ◽  
Vol 70 (7) ◽  
pp. 3816-3823 ◽  
Author(s):  
K. A. Fields ◽  
E. Fischer ◽  
T. Hackstadt

ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that develops within a parasitophorous vacuole termed an inclusion. The inclusion is nonfusogenic with lysosomes but intercepts lipids from a host cell exocytic pathway. Initiation of chlamydial development is concurrent with modification of the inclusion membrane by a set of C. trachomatis-encoded proteins collectively designated Incs. One of these Incs, IncA, is functionally associated with the homotypic fusion of inclusions. Inclusions also do not fuse when cultures are multiply infected with C. trachomatis and cultivated at 32°C. We obtained evidence linking these experimental observations by characterizing IncA localization in 32°C cultures. Analysis of inclusions by light and transmission electron microscopy confirmed that HeLa cells infected with multiple C. trachomatis elementary bodies and cultivated at 32°C for 24 h contained multiple, independent inclusions. Reverse transcriptase PCR and immunoblot analyses of C. trachomatis-infected HeLa cells demonstrated the presence of IncA at 24 h in 32°C cultures. When parallel cultures were probed with IncA-specific antibodies in indirect immunofluorescence assays, IncA was detectable in intracellular chlamydiae but not within the inclusion membrane. In addition, analysis of purified reticulate bodies from 37 and 32°C cultures showed that bacterium-associated pools of IncA are enriched in cultures grown at 32°C. Microscopic observation of infected cells revealed that some vacuoles had fused by 48 h postinfection, and this finding was correlated with the detection of IncA in inclusion membranes by immunofluorescence microscopy. The data are consistent with a requirement for IncA in fusions of C. trachomatis inclusions and suggest that the effect of incubation at 32°C is manifested by restricted export of IncA to the inclusion membrane.


2021 ◽  
Author(s):  
Mary R. Brockett ◽  
Junghoon Lee ◽  
John V. Cox ◽  
George W. Liechti ◽  
Scot P. Ouellette

Bactofilins are polymer-forming cytoskeletal proteins that are widely conserved in bacteria. Members of this protein family have diverse functional roles such as orienting subcellular molecular processes, establishing cell polarity, and aiding in cell shape maintenance. Using sequence alignment to the conserved bactofilin domain, we identified a bactofilin ortholog, BacACT, in the obligate intracellular pathogen Chlamydia trachomatis. Chlamydia species are obligate intracellular bacteria that undergo a developmental cycle alternating between infectious, non-dividing EBs (elementary bodies) and non-infectious, dividing RBs (reticulate bodies). As Chlamydia divides by a polarized division process, we hypothesized that BacACT may function to establish polarity in these unique bacteria. Utilizing a combination of fusion constructs and high-resolution fluorescence microscopy, we determined that BacACT forms dynamic, membrane-associated filament- and ring-like structures in Chlamydia’s replicative RB form. Contrary to our hypothesis, these structures are distinct from the microbe’s cell division machinery and do not colocalize with septal peptidoglycan or MreB, the major organizer of the bacterium’s division complex. Bacterial two-hybrid assays demonstrated BacACT interacts homotypically but does not directly interact with proteins involved in cell division or peptidoglycan biosynthesis. To investigate the function of BacACT in chlamydial development, we constructed a conditional knockdown strain using a newly developed CRISPR interference system. We observed that reducing bacACT expression significantly increased chlamydial cell size. Normal RB morphology was restored when an additional copy of bacACT was expressed in trans during knockdown. These data reveal a novel function for chlamydial bactofilin in maintaining cell size in this obligate intracellular bacterium.


2020 ◽  
Author(s):  
Mary R. Brockett ◽  
Junghoon Lee ◽  
John V. Cox ◽  
George W. Liechti ◽  
Scot P. Ouellette

ABSTRACTBactofilins are polymer-forming cytoskeletal proteins that are widely conserved in bacteria. Members of this protein family have diverse functional roles such as orienting subcellular molecular processes, establishing cell polarity, and aiding in cell shape maintenance. Chlamydia species are obligate intracellular bacteria that undergo a developmental cycle alternating between an infectious, non-dividing EB and a non-infectious, dividing RB. As Chlamydia divides by a polarized division process, we hypothesized that BacACT may function to establish polarity in these unique bacteria. Using sequence alignment to the conserved bactofilin domain, we identified a bactofilin ortholog, BacACT, in the obligate intracellular pathogen Chlamydia trachomatis. Utilizing a combination of fusion constructs and high-resolution fluorescence microscopy, we determined that BacACT forms a dynamic, membrane-associated, ring-like structure in Chlamydia’s replicative RB form. Contrary to our hypothesis, this filamentous ring structure is distinct from the microbe’s cell division machinery and does not colocalize with septal peptidoglycan or MreB, the major organizer of the bacterium’s division complex. Bacterial two-hybrid assays demonstrated BacACT interacts homotypically but does not directly interact with proteins involved in cell division or peptidoglycan biosynthesis. To investigate the function of BacACT in chlamydial development, we constructed a conditional knockdown strain using a newly developed CRISPR interference system. We observed that reducing bacACT expression significantly impacted chlamydial cell size and morphology. Normal RB morphology was restored when an additional copy of BacACT was expressed in trans during knockdown. These data reveal a novel function for chlamydial bactofilin in maintaining cell shape in this obligate intracellular bacterium.IMPORTANCEChlamydia is an ancient, obligate intracellular bacterium with a unique biphasic developmental cycle. As a result of its evolution within the osmotically stable environment of a host cell, Chlamydia has lost its dependence on side-wall peptidoglycan, and maintains only a fraction of the components thought to be required for regulating bacterial cell size and division. As such, very little is known about how Chlamydia species carry out these critical processes in the absence of a stabilizing peptidoglycan layer. In the current study, we identify a novel cytoskeletal element, termed a bactofilin, that is critical for maintaining the morphology of the bacteria. Using state-of-the-art genetic techniques for this organism, we demonstrate that chlamydial bactofilin forms a dynamic ring structure independent of the microbe’s division machinery and that abrogating its expression level using CRISPR interference results in abnormal morphologic forms. These findings enhance our understanding of chlamydial biology and bactofilins more generally.


2010 ◽  
Vol 54 (11) ◽  
pp. 707-713 ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Shinji Nakamura ◽  
Junji Matsuo ◽  
Tatsuya Fukumoto ◽  
Mitsutaka Yoshida ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0118595 ◽  
Author(s):  
Megan Woolfit ◽  
Manjula Algama ◽  
Jonathan M. Keith ◽  
Elizabeth A. McGraw ◽  
Jean Popovici

2000 ◽  
Vol 68 (4) ◽  
pp. 2187-2195 ◽  
Author(s):  
Gary M. Winslow ◽  
Eric Yager ◽  
Konstantin Shilo ◽  
Erin Volk ◽  
Andrew Reilly ◽  
...  

ABSTRACT It is generally accepted that cellular, but not humoral immunity, plays an important role in host defense against intracellular bacteria. However, studies of some of these pathogens have provided evidence that antibodies can provide immunity if present during the initiation of infection. Here, we examined immunity against infection byEhrlichia chaffeensis, an obligate intracellular bacterium that causes human monocytic ehrlichiosis. Studies with mice have demonstrated that immunocompetent strains are resistant to persistent infection but that SCID mice become persistently and fatally infected. Transfer of immune serum or antibodies obtained from immunocompetent C57BL/6 mice to C57BL/6 scid mice provided significant although transient protection from infection. Bacterial clearance was observed when administration occurred at the time of inoculation or well after infection was established. The effect was dose dependent, occurred within 2 days, and persisted for as long as 2 weeks. Weekly serum administration prolonged the survival of susceptible mice. Although cellular immunity is required for complete bacterial clearance, the data show that antibodies can play a significant role in the elimination of this obligate intracellular bacterium during active infection and thus challenge the paradigm that humoral responses are unimportant for immunity to such organisms.


Sign in / Sign up

Export Citation Format

Share Document