biosynthesis inhibitors
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 25)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Sanaz Ahmadipour ◽  
Jóhannes Reynisson ◽  
Robert A Field ◽  
Gavin J Miller

2021 ◽  
Author(s):  
Brianne M. Dudiak ◽  
Tri M. Nguyen ◽  
David Needham ◽  
Taylor C. Outlaw ◽  
Dewey G. McCafferty

Chlamydia trachomatis, an obligate intracellular bacterium with limited metabolic capabilities, possesses the futalosine pathway for menaquinone biosynthesis. Futalosine pathway enzymes have promise as narrow spectrum targets, but the activity and essentiality of chlamydial menaquinone biosynthesis have yet to be established. In this work, menaquinone-7 (MK-7) was identified as a C. trachomatis-produced quinone through LC-MS/MS. An immunofluorescence-based assay revealed that treatment of C. trachomatis-infected HeLa cells with futalosine pathway inhibitor docosahexaenoic acid (DHA) reduced inclusion number, inclusion size, and infectious progeny. Supplementation with MK-7 nanoparticles rescued the effect of DHA on inclusion number, indicating that the futalosine pathway is a target of DHA in this system. These results open the door for menaquinone biosynthesis inhibitors to be pursued in antichlamydial development.


Author(s):  
Raegan T Larson ◽  
Heather E McFarlane

Abstract Cellulose is one of the most abundant biopolymers on Earth. It provides mechanical support to growing plant cells and important raw materials for paper, textiles, and biofuel feedstocks. Cellulose biosynthesis inhibitors (CBIs) are invaluable tools for studying cellulose biosynthesis and can be important herbicides for controlling weed growth. Here, we review CBIs with particular focus on the most widely used CBIs and recently discovered CBIs. We discuss the effects of these CBIs on plant growth and development and plant cell biology, and summarize what is known about the mode of action of these different CBIs.


2021 ◽  
Author(s):  
David Schultz ◽  
Robert Johnson ◽  
Kasirajan Ayyanathan ◽  
Jesse Miller ◽  
Kanupriya Whig ◽  
...  

The ongoing COVID-19 pandemic has highlighted the dearth of approved drugs to treat viral infections, with only ~90 FDA approved drugs against human viral pathogens. To identify drugs that can block SARS-CoV-2 replication, extensive drug screening to repurpose approved drugs is underway. Here, we screened ~18,000 drugs for antiviral activity using live virus infection in human respiratory cells. Dose-response studies validate 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Amongst these drug candidates are 16 nucleoside analogs, the largest category of clinically used antivirals. This included the antiviral Remdesivir approved for use in COVID-19, and the nucleoside Molnupirivir, which is undergoing clinical trials. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral, and we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogs synergistically inhibits SARS-CoV-2 infection in vitro and in vivo suggesting a clinical path forward.


2021 ◽  
Vol 214 ◽  
pp. 113241
Author(s):  
Thibaut Legigan ◽  
Evelyne Migianu-Griffoni ◽  
Mohamed Abdenour Redouane ◽  
Aurélie Descamps ◽  
Julia Deschamp ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Kyle H. Rohde ◽  
Leonardo Sorci

Given the upsurge of drug-resistant tuberculosis worldwide, there is much focus on developing novel drug combinations allowing shorter treatment duration and a lower toxicity profile. Nicotinamide adenine dinucleotide (NAD) biosynthesis targeting is acknowledged as a promising strategy to combat drug-susceptible, drug-resistant, and latent tuberculosis (TB) infections. In this review, we describe the potential synergy of NAD biosynthesis inhibitors with several TB-drugs in prospective novel combination therapy. Despite not directly targeting the essential NAD cofactor’s biosynthesis, several TB prodrugs either require a NAD biosynthesis enzyme to be activated or form a toxic chemical adduct with NAD(H) itself. For example, pyrazinamide requires the action of nicotinamidase (PncA), often referred to as pyrazinamidase, to be converted into its active form. PncA is an essential player in NAD salvage and recycling. Since most pyrazinamide-resistant strains are PncA-defective, a combination with downstream NAD-blocking molecules may enhance pyrazinamide activity and possibly overcome the resistance mechanism. Isoniazid, ethionamide, and delamanid form NAD adducts in their active form, partly perturbing the redox cofactor metabolism. Indeed, NAD depletion has been observed in Mycobacterium tuberculosis (Mtb) during isoniazid treatment, and activation of the intracellular NAD phosphorylase MbcT toxin potentiates its effect. Due to the NAD cofactor’s crucial role in cellular energy production, additional synergistic correlations of NAD biosynthesis blockade can be envisioned with bedaquiline and other drugs targeting energy-metabolism in mycobacteria. In conclusion, future strategies targeting NAD metabolism in Mtb should consider its potential synergy with current and other forthcoming TB-drugs.


Author(s):  
Kjell De Vriese ◽  
Jacob Pollier ◽  
Alain Goossens ◽  
Tom Beeckman ◽  
Steffen Vanneste

Abstract Plants stand out among eukaryotes due to the large variety of sterols and sterol derivatives that they can produce. These metabolites not only serve as critical determinants of membrane structures, but also act as signaling molecules, as growth-regulating hormones, or as modulators of enzyme activities. Therefore, it is critical to understand the wiring of the biosynthetic pathways by which plants generate these distinct sterols, to allow their manipulation and to dissect their precise physiological roles. Here, we review the complexity and variation of the biosynthetic routes of the most abundant phytosterols and cholesterol in the green lineage and how different enzymes in these pathways are conserved and diverged from humans, yeast, and even bacteria. Many enzymatic steps show a deep evolutionary conservation, while others are executed by completely different enzymes. This has important implications for the use and specificity of available human and yeast sterol biosynthesis inhibitors in plants, and argues for the development of plant-tailored inhibitors of sterol biosynthesis.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Sean D. Liston ◽  
Luke Whitesell ◽  
Catherine A. McLellan ◽  
Ralph Mazitschek ◽  
Vidmantas Petraitis ◽  
...  

ABSTRACT The glycosylphosphatidylinositol anchor biosynthesis inhibitor gepinacin demonstrates broad-spectrum antifungal activity and negligible mammalian toxicity in culture but is metabolically labile. The stability and bioactivity of 39 analogs were tested in vitro to identify LCUT-8, a stabilized lead with increased potency and promising single-dose pharmacokinetics. Unfortunately, no antifungal activity was seen at the maximum dosing achievable in a neutropenic rabbit model. Nevertheless, structure-activity relationships identified here suggest strategies to further improve compound potency, solubility, and stability.


Sign in / Sign up

Export Citation Format

Share Document