scholarly journals Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants

2021 ◽  
Author(s):  
Brogan J Harris ◽  
James W Clark ◽  
Dominik Schrempf ◽  
Gergely J Szöllősi ◽  
Philip Donoghue ◽  
...  

The origin of plants and their colonization of land resulted in the transformation of the terrestrial environment. Here we investigate the evolution of the land plants (embryophytes) and their two main lineages, the tracheophytes (vascular plants) and bryophytes (non vascular plants). We used new fossil calibrations, relative lineage dating implied by horizontal gene transfer, and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes and bryophytes as monophyletic sister groups that diverged in the Cambrian, 515-494 Ma. The embryophyte stem is characterised by a burst of gene innovation, while bryophytes subsequently experienced a no less dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses confirm that extant tracheophytes and bryophytes are both highly derived; as a result, understanding the origin of land plants requires tracing character evolution across the diversity of modern lineages.

2014 ◽  
Vol 83 (4) ◽  
pp. 363-368 ◽  
Author(s):  
Qia Wang ◽  
Hang Sun ◽  
Jinling Huang

Recent studies suggest that horizontal gene transfer (HGT) played a significant role in the evolution of eukaryotic lineages. We here review the mechanisms of HGT in plants and the importance of HGT in land plant evolution. In particular, we discuss the role of HGT in plant colonization of land, phototropic response, C<sub>4</sub> photosynthesis, and mitochondrial genome evolution.


2010 ◽  
Vol 186 (2) ◽  
pp. 514-525 ◽  
Author(s):  
Bin Wang ◽  
Li Huey Yeun ◽  
Jia-Yu Xue ◽  
Yang Liu ◽  
Jean-Michel Ané ◽  
...  

2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Jipei Yue ◽  
Xiangyang Hu ◽  
Hang Sun ◽  
Yongping Yang ◽  
Jinling Huang

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Hiromi Nishida ◽  
Reina Abe ◽  
Taishi Nagayama ◽  
Kentaro Yano

The extremely radioresistant bacteria of the genus Deinococcus and the extremely thermophilic bacteria of the genus Thermus belong to a common taxonomic group. Considering the distinct living environments of Deinococcus and Thermus, different genes would have been acquired through horizontal gene transfer after their divergence from a common ancestor. Their guanine-cytosine (GC) contents are similar; however, we hypothesized that their genomic signatures would be different. Our findings indicated that the genomes of Deinococcus radiodurans and Thermus thermophilus have different tetranucleotide frequencies. This analysis showed that the genome signature of D. radiodurans is most similar to that of Pseudomonas aeruginosa, whereas the genome signature of T. thermophilus is most similar to that of Thermanaerovibrio acidaminovorans. This difference in genome signatures may be related to the different evolutionary backgrounds of the 2 genera after their divergence from a common ancestor.


2013 ◽  
Author(s):  
Kevin Dougherty ◽  
Brian A Smith ◽  
Autum F Moore ◽  
Shannon Maitland ◽  
Chris Fanger ◽  
...  

Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e. changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmid and phage, little is known about how size of the acquired region affects the magnitude or number of such costs. Here we describe an amazing breadth of phenotypic changes which occur after a large-scale horizontal transfer event (~1Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.


2019 ◽  
Author(s):  
William R. Chase ◽  
Olga Zhaxybayeva ◽  
Jorge Rocha ◽  
Daniel J. Cosgrove ◽  
Lori R. Shapiro

AbstractPlants must rearrange the network of complex carbohydrates in their cell walls during normal growth and development. To accomplish this, all plants depend on proteins called expansins that non-enzymatically loosen hydrogen bonds between cellulose microfibrils. Because of their key role in cell wall extension during growth, expansin genes are ubiquitous, diverse, and abundant throughout all land plants. Surprisingly, expansin genes have more recently been found in some bacteria and microbial eukaryotes, where their biological functions are largely unknown. Here, we reconstruct the phylogeny of microbial expansin genes. We find these genes in all eukaryotic microorganisms that have structural cellulose in their cell walls, suggesting expansins evolved in ancient marine microorganisms long before the evolution of land plants. We also find expansins in an unexpectedly high phylogenetic diversity of bacteria and fungi that do not have cellulosic cell walls. These bacteria and fungi with expansin genes inhabit varied ecological contexts mirroring the diversity of terrestrial and aquatic niches where plant and/or algal cellulosic cell walls are present. The microbial expansin phylogeny shows evidence of multiple horizontal gene transfer events within and between bacterial and eukaryotic microbial lineages, which may in part underlie their unusually broad phylogenetic distribution. Taken together, we find expansins to be unexpectedly widespread in both bacterial and eukaryotic genetic backgrounds, and that the contribution of these genes to bacterial and fungal ecological interactions with plants and algae has likely been underappreciated.ImportanceCellulose is the most abundant biopolymer on earth. In plant cell walls, where most global cellulose biomass is found, cellulose microfibrils occur intertwined with hemicelluloses and pectins. The rigidity of this polysaccharide matrix provides plant cell walls with structural support, but this rigidity also restricts cellular growth and development. Irreversible, non-enzymatic loosening of structural carbohydrates by expansin proteins is key to successful cell wall growth in plants and green algae. Here, we find that expansin genes are distributed far more broadly throughout diverse bacterial and fungal lineages lacking cellulosic cell walls than previously known. Multiple horizontal gene transfer events are in part responsible for their unusually wide phylogenetic distribution. Together, these results suggest that in addition to being the key evolutionary innovation by which eukaryotes remodel structural cellulose in their cell walls, expansins likely have remarkably broad and under-recognized utility for microbial species that interact with plant and algal structural cellulose in diverse ecological contexts.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Huimin Fang ◽  
Liexiang Huangfu ◽  
Rujia Chen ◽  
Pengcheng Li ◽  
Shuhui Xu ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 362-379 ◽  
Author(s):  
Tereza Ševčíková ◽  
Tatiana Yurchenko ◽  
Karen P Fawley ◽  
Raquel Amaral ◽  
Hynek Strnad ◽  
...  

Abstract Eustigmatophytes, a class of stramenopile algae (ochrophytes), include not only the extensively studied biotechnologically important genus Nannochloropsis but also a rapidly expanding diversity of lineages with much less well characterized biology. Recent discoveries have led to exciting additions to our knowledge about eustigmatophytes. Some proved to harbor bacterial endosymbionts representing a novel genus, Candidatus Phycorickettsia, and an operon of unclear function (ebo) obtained by horizontal gene transfer from the endosymbiont lineage was found in the plastid genomes of still other eustigmatophytes. To shed more light on the latter event, as well as to generally improve our understanding of the eustigmatophyte evolutionary history, we sequenced plastid genomes of seven phylogenetically diverse representatives (including new isolates representing undescribed taxa). A phylogenomic analysis of plastid genome-encoded proteins resolved the phylogenetic relationships among the main eustigmatophyte lineages and provided a framework for the interpretation of plastid gene gains and losses in the group. The ebo operon gain was inferred to have probably occurred within the order Eustigmatales, after the divergence of the two basalmost lineages (a newly discovered hitherto undescribed strain and the Pseudellipsoidion group). When looking for nuclear genes potentially compensating for plastid gene losses, we noticed a gene for a plastid-targeted acyl carrier protein that was apparently acquired by horizontal gene transfer from Phycorickettsia. The presence of this gene in all eustigmatophytes studied, including representatives of both principal clades (Eustigmatales and Goniochloridales), is a genetic footprint indicating that the eustigmatophyte–Phycorickettsia partnership started no later than in the last eustigmatophyte common ancestor.


mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anoop Singh ◽  
Mohita Gaur ◽  
Vishal Sharma ◽  
Palak Khanna ◽  
Ankur Bothra ◽  
...  

ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are conserved genetic elements in many prokaryotes, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Although knowledge of CRISPR locus variability has been utilized in M. tuberculosis strain genotyping, its evolutionary path in Mycobacteriaceae is not well understood. In this study, we have performed a comparative analysis of 141 mycobacterial genomes and identified the exclusive presence of the CRISPR-Cas type III-A system in M. tuberculosis complex (MTBC). Our global phylogenetic analysis of CRISPR repeats and Cas10 proteins offers evidence of horizontal gene transfer (HGT) of the CRISPR-Cas module in the last common ancestor of MTBC and Mycobacterium canettii from a Streptococcus-like environmental bacterium. Additionally, our results show that the variation of CRISPR-Cas organization in M. tuberculosis lineages, especially in the Beijing sublineage of lineage 2, is due to the transposition of insertion sequence IS6110. The direct repeat (DR) region of the CRISPR-Cas locus acts as a hot spot for IS6110 insertion. We show in M. tuberculosis H37Rv that the repeat at the 5′ end of CRISPR1 of the forward strand is an atypical repeat made up partly of IS-terminal inverted repeat and partly CRISPR DR. By tracing an undetectable spacer sequence in the DR region, the two CRISPR loci could theoretically be joined to reconstruct the ancestral single CRISPR-Cas locus organization, as seen in M. canettii. This study retracing the evolutionary events of HGT and IS6110-driven genomic deletions helps us to better understand the strain-specific variations in M. tuberculosis lineages. IMPORTANCE Comparative genomic analysis of prokaryotes has led to a better understanding of the biology of several pathogenic microorganisms. One such clinically important pathogen is M. tuberculosis, the leading cause of bacterial infection worldwide. Recent evidence on the functionality of the CRISPR-Cas system in M. tuberculosis has brought back focus on these conserved genetic elements, present in many prokaryotes. Our study advances understanding of mycobacterial CRISPR-Cas origin and its diversity among the different species. We provide phylogenetic evidence of acquisition of CRISPR-Cas type III-A in the last common ancestor shared between MTBC and M. canettii, by HGT-mediated events. The most likely source of HGT was an environmental Firmicutes bacterium. Genomic mapping of the CRISPR loci showed the IS6110 transposition-driven variations in M. tuberculosis strains. Thus, this study offers insights into events related to the evolution of CRISPR-Cas in M. tuberculosis lineages.


Sign in / Sign up

Export Citation Format

Share Document