scholarly journals Three-dimensional in vitro model of the device-tissue interface reveals innate neuroinflammation can be mitigated by antioxidant ceria nanoparticles

2021 ◽  
Author(s):  
Elaina Atherton ◽  
Yue Hu ◽  
Sophie Brown ◽  
Emily Papiez ◽  
Vivian Ling ◽  
...  

The recording instability of neural implants due to neuroinflammation at the device-tissue interface (DTI) is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local innate immune responses are not well-understood. Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensional in vitro model of the DTI by seeding primary cortical cells around microwires. Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through the in vivo blood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of perpetual antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity. Overall, our avascular in vitro model of the DTI exhibited symptoms of OS-mediated innate neuroinflammation which were mitigated by antioxidant intervention.

RSC Advances ◽  
2019 ◽  
Vol 9 (31) ◽  
pp. 17995-18007 ◽  
Author(s):  
Lingyan Wu ◽  
Gaia Ferracci ◽  
Yan Wang ◽  
Teng Fei Fan ◽  
Nam-Joon Cho ◽  
...  

As drug-induced hepatotoxicity represents one of the most common causes of drug failure, three-dimensional in vitro liver platforms represent a fantastic toolbox to predict drug toxicity and reduce in vivo studies and drug attrition rates.


2013 ◽  
Vol 2 (6) ◽  
pp. 412-420 ◽  
Author(s):  
Elena García-Gareta ◽  
Nivedita Ravindran ◽  
Vaibhav Sharma ◽  
Sorousheh Samizadeh ◽  
Julian F. Dye

Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2021 ◽  
Vol 22 (6) ◽  
pp. 2925
Author(s):  
Victor Häussling ◽  
Romina H Aspera-Werz ◽  
Helen Rinderknecht ◽  
Fabian Springer ◽  
Christian Arnscheidt ◽  
...  

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.


2007 ◽  
Vol 88 (11) ◽  
pp. 2977-2984 ◽  
Author(s):  
Don Stoltz ◽  
Renée Lapointe ◽  
Andrea Makkay ◽  
Michel Cusson

Unlike most viruses, the mature ichnovirus particle possesses two unit membrane envelopes. Following loss of the outer membrane in vivo, nucleocapsids are believed to gain entry into the cytosol via a membrane fusion event involving the inner membrane and the plasma membrane of susceptible host cells; accordingly, experimentally induced damage to the outer membrane might be expected to increase infectivity. Here, in an attempt to develop an in vitro model system for studying ichnovirus infection, we show that digitonin-induced disruption of the virion outer membrane not only increases infectivity, but also uncovers an activity not previously associated with any polydnavirus: fusion from without.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (20) ◽  
pp. 3447-3461 ◽  
Author(s):  
Gaurav Agrawal ◽  
Aereas Aung ◽  
Shyni Varghese

We introduce a microfluidic platform in which we culture three-dimensional skeletal muscle tissues, while evaluating tissue formation and toxin-induced muscle injury.


Sign in / Sign up

Export Citation Format

Share Document