Club cells are the primary source of pIgR in small airways

2021 ◽  
Author(s):  
Jessica B Blackburn ◽  
Jacob A Schaff ◽  
Sergey Gutor ◽  
Rui-Hong Du ◽  
David Nichols ◽  
...  

Background: Loss of secretory immunoglobulin A (SIgA) is common in COPD small airways and likely contributes to disease progression. We hypothesized loss of SIgA results from reduced numbers of cells expressing pIgR, a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. Methods: pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in-situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice utilized immunostaining, primary murine tracheal epithelial cell (MTEC) culture, and transgenic mice with club or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from non-typeable Haemophilus influenzae (NTHi) was evaluated in vitro. Results: Club cells are the predominant cell type responsible for pIgR expression in human and murine airways, but neither loss of pIgR-expressing club cells or reduced pIgR expression in individual cells fully explains loss of SIgA in the airways in patients with advanced COPD. In contrast, we found that neutrophil elastase and NTHi-secreted proteases degrade SIgA in vitro. Interpretation: Club cells are the dominant cell type responsible for pIgR expression and thus play a key role in the maintaining the secretory IgA immunobarrier. However, neither a loss of club cells or reduced pIgR expression within individual cells fully accounts for loss of SIgA in COPD.

Author(s):  
Ameen A. Salahudeen ◽  
Shannon S. Choi ◽  
Arjun Rustagi ◽  
Junjie Zhu ◽  
Sean M. de la O ◽  
...  

ABSTRACTThe distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5+ cells contained a distinct ITGA6+ITGB4+ mitotic population whose proliferation segregated to a TNFRSF12Ahi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12Ahi subset of FACS-purified ITGA6+ITGB4+ basal cells from human lung or derivative organoids. In vivo, TNFRSF12A+ cells comprised ~10% of KRT5+ basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 “apical-out” organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.


2021 ◽  
Author(s):  
Zhengyu Ouyang ◽  
Nathanael Bourgeois ◽  
Eugenia Lyashenko ◽  
Paige Cundiff ◽  
Patrick F Cullen ◽  
...  

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


1995 ◽  
Vol 38 (20) ◽  
pp. 3972-3982 ◽  
Author(s):  
Philip D. Edwards ◽  
Mark A. Zottola ◽  
Matthew Davis ◽  
Joseph Williams ◽  
Paul A. Tuthill

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 358 ◽  
Author(s):  
Andreia Nunes ◽  
Joana Marto ◽  
Lídia Maria Gonçalves ◽  
Sandra Simões ◽  
Rita Félix ◽  
...  

Human neutrophil elastase (HNE) is a serine protease that degrades matrix proteins. An excess of HNE may trigger several pathological conditions, such as psoriasis. In this work, we aimed to synthesize, characterize and formulate new HNE inhibitors with a 4-oxo-β-lactam scaffold with less toxicity, as well as therapeutic index in a psoriasis context. HNE inhibitors with 4-oxo-β-lactam scaffolds were synthesized and characterized by NMR, FTIR, melting point, mass spectrometry and elemental analysis. In vitro cytotoxicity and serine protease assays were performed. The compound with the highest cell viability (AAN-16) was selected to be incorporated in an emulsion (AAN-16 E) and in a microemulsion (AAN-16 ME). Formulations were characterized in terms of organoleptic properties, pH, rheology, droplet size distribution, in vitro drug release and in vivo psoriatic activity. All compounds were successfully synthesized according to analytical methodology, with good yields. Both formulations presented suitable physicochemical properties. AAN-16 E presented the most promising therapeutic effects in a murine model of psoriasis. Overall, new HNE inhibitors were synthesized with high and selective activity and incorporated into topical emulsions with potential to treat psoriasis.


2001 ◽  
Vol 45 (1) ◽  
pp. 196-202 ◽  
Author(s):  
Dieter Worlitzsch ◽  
Hayal Kaygin ◽  
Andrea Steinhuber ◽  
Axel Dalhoff ◽  
Konrad Botzenhart ◽  
...  

ABSTRACT In Staphylococcus aureus infection hemolysis caused by the extracellular protein α-toxin encoded by hla is thought to contribute significantly to its multifactorial virulence. In vitro, subinhibitory concentrations of β-lactam antibiotics and fluoroquinolones increase the levels of hla and α-toxin expression, whereas aminoglycosides decrease the levels ofhla and α-toxin expression. In the present study we investigated the effects of subinhibitory concentrations of amoxicillin, gentamicin, and moxifloxacin on hla and α-toxin expression and total hemolysis of S. aureusstrain 8325-4, a high-level α-toxin producer, and its α-toxin-negative mutant, DU 1090, in vitro and in a rat model of chronic S. aureus infection. The levels of expression ofhla and α-toxin and total hemolysis did not differ significantly when amoxicillin, gentamicin, or moxifloxacin was added to cultures of S. aureus strain 8325-4. In vivo, strain 8325-4 induced a significantly increased level of hemolysis in infected pouches compared to that in uninfected control pouches, but the hemolysis was reduced to control levels by treatment with doses of amoxicillin, gentamicin, or moxifloxacin that reduced bacterial numbers by 2 orders of magnitude. Additionally, the effects of subinhibitory concentrations of the three antibiotics on total hemolysis of four methicillin-resistant S. aureus and three methicillin-sensitive S. aureus (MSSA) clinical isolates were assessed in vitro. A significant increase in total hemolysis was observed for only one MSSA strain when it was treated with amoxicillin but not when it was treated with moxifloxacin or gentamicin. When purified α-toxin was incubated with purified human neutrophil elastase, α-toxin was cleaved nearly completely. The results suggest that the penicillin-induced increases in S. aureusα-toxin expression are strain dependent, that reduction of bacterial numbers in vivo counteracts this phenomenon effectively, and finally, that in localized S. aureus infections α-toxin activity is controlled by neutrophil elastase.


1991 ◽  
Vol 81 (6) ◽  
pp. 777-784 ◽  
Author(s):  
A. Rudolphus ◽  
R. Heinzel-Wieland ◽  
V. A. M. M. Vincent ◽  
D. Saunders ◽  
G. J. Steffens ◽  
...  

1. Antileucoprotease, being sensitive to oxidative inactivation, can be produced by recombinant techniques. Via site-directed mutagenesis, two mutants of recombinant antileucoprotease were produced in which one or more of the oxidation-sensitive methionine residues were replaced by leucine: in rALP242, methionine-73 was replaced by leucine, and in rALP231, leucine was substituted for four methionine residues. In vitro, native antileucoprotease and the recombinant antileucoprotease preparations have similar inhibitory characteristics towards human neutrophil elastase. We hypothesized that replacement of methionine residues in the antileucoprotease molecule would result in a reduced oxidation sensitivity of the mutants. 2. After incubation of recombinant antileucoprotease and its mutants with increasing dosages of cis-platinum(II)diammine dichloride, we observed that native antileucoprotease and recombinant antileucoprotease were inactivated by this reagent to the same extent. Compared with this, rALP242 was less inactivated, whereas the inhibitory capacity of rALP231 was not influenced by cis-platinum(II)diammine dichloride at all. 3. After incubation of recombinant antileucoprotease, rALP242 and rALP231 with triggered polymorphonuclear leucocytes, which are thought to produce an excess of oxidants, we measured residual inhibitory activities towards human neutrophil elastase of 10%, 55% and 87%, respectively. 4. In vivo, the inhibitory effects of intratracheally administered rALP242 and rALP231 towards human-neutrophil-elastase-induced emphysema were significantly greater than that of recombinant antileucoprotease. There were no significant differences between the mutants. With respect to secretory cell metaplasia and haemorrhage, rALP231 tended to be a better inhibitor than recombinant antileucoprotease and rALP242. 5. We conclude that the recombinant antileucoprotease mutants are less sensitive to oxidation and consequently inhibit human-neutrophil-elastase-induced emphysema to a greater extent than recombinant antileucoprotease.


2011 ◽  
Vol 39 (06) ◽  
pp. 1193-1206 ◽  
Author(s):  
De-Peng Jiang ◽  
Qi Li ◽  
Jie Yang ◽  
Juliy M. Perelman ◽  
Victor P. Kolosov ◽  
...  

The aim of this study was to investigate the influence of scutellarin on mucus production induced by human neutrophil elastase (HNE) and the possible in vitro and in vivo mechanisms. To this purpose, cells were incubated with saline, scutellarin or gefitinib for 60 min and exposed to 0.1 μM HNE for 24 h. After being pretreated respectively with saline, scutellarin or gefitinib, rats were challenged intratracheally with HNE by means of nebulization for 30 days. The expression of mucin (MUC) 5AC, protein kinase C (PKC), and extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by ELISA, RT-PCR or Western blotting. The results showed that scutellarin inhibited MUC5AC mRNA and protein expressions induced by HNE in a concentration-dependent manner in vitro. In the in vivo model, scutellarin significantly attenuated MUC5AC mRNA expression and goblet cell hyperplasia in rats treated with HNE for 30 days, as well as decreased the phosporylation of PKC and ERK1/2 compared to the HNE control group. Therefore, our study showed that scutellarin could prevent mucus hypersecretion by inhibiting the PKC-ERK signaling pathway. Inhalation scutellarin may be valuable in the treatment of chronic inflammatory lung disease.


Sign in / Sign up

Export Citation Format

Share Document