scholarly journals Humans can track but fail to predict accelerating objects

2021 ◽  
Author(s):  
Philipp Kreyenmeier ◽  
Luca Kaemmer ◽  
Jolande Fooken ◽  
Miriam Spering

Objects in our visual environment often move unpredictably and can suddenly speed up or slow down. The ability to account for acceleration when interacting with moving objects can be critical for survival. Here, we investigate how human observers track an accelerating target with their eyes and predict its time of reappearance after a temporal occlusion by making an interceptive hand movement. Before occlusion, the target was initially visible and accelerated for a brief period. We tested how observers integrated target motion information by comparing three alternative models that predicted time-to-contact (TTC) based on the (1) final target velocity sample before occlusion, (2) average target velocity before occlusion, or (3) target acceleration. We show that visually-guided smooth pursuit eye movements reliably reflect target acceleration prior to occlusion. However, systematic saccade and manual interception timing errors reveal an inability to consider acceleration when predicting TTC. Interception timing is best described by the final velocity model that relies on extrapolating the last available velocity sample before occlusion. These findings provide compelling evidence for differential acceleration integration mechanisms in vision-guided eye movements and prediction-guided interception and a mechanistic explanation for the function and failure of interactions with accelerating objects.

2000 ◽  
Vol 59 (2) ◽  
pp. 108-114 ◽  
Author(s):  
Kazuo Koga

Evidence is presented that eye movements have a strong modulation effect on perceived motion of an object in an induced motion situation. It was investigated whether pursuit eye movements affect motion perception, particularly target velocity perception, under the following stimulus conditions: (1) laterally moving objects on the computer display, (2) recurrent simple target motion and, (3) a unilaterally scrolling grid. The observers' eye movements were recorded and, at the same time, their responses with respect to their velocity perception were registered and analyzed in synchronization with the eye movement data. In most cases, when pursuit eye movements were synchronized with the movement of the target, the velocity of the target was judged to be slow or motionless. An explanation of the results is presented which is based on two sources of motion information: (1) A displacement detector in terms of retinal coordinates, and (2) a proprioceptive sensing unit associated with the eye movements. The veridicality of the judgments of the velocity of the object motion was determined by the complexity of the processes for integrating the signals from the two channels.


1996 ◽  
Vol 75 (1) ◽  
pp. 454-468 ◽  
Author(s):  
J. A. Sweeney ◽  
M. A. Mintun ◽  
S. Kwee ◽  
M. B. Wiseman ◽  
D. L. Brown ◽  
...  

1. The purpose of this study is to define the cortical regions that subserve voluntary saccadic eye movements and spatial working memory in humans. 2. Regional cerebral blood flow (rCBF) during performance of oculomotor tasks was measured with [15O]-H2O positron emission tomography (PET). Eleven well-trained, healthy young adults performed the following tasks: visual fixation, visually guided saccades, antisaccades (a task in which subjects made saccades away from rather than toward peripheral targets), and either an oculomotor delayed response (ODR, a task requiring memory-guided saccades after a delay period) or a conditional antisaccade task (a task in which the color of the peripheral target determined whether a saccade toward or away from the target was required). An additional six subjects performed a sequential hand movement task to compare localization of hand-related motor cortex and the frontal eye fields (FEFs) and of the hand- and eye-movement-related regions of the supplementary motor area (SMA). 3. Friston's statistical parametric mapping (SPM) method was used to identify significant changes in rCBF associated with task performance. Because SPM does not take advantage of the anatomic information available in magnetic resonance (MR) scans, each subject's PET scan was registered to that individual's MR scan, after which all PET and MR studies were transformed to conform to a standard reference MR image set. Subtraction images were visually inspected while overlayed on the reference MR scan to which PET images had been aligned, in order to confirm anatomic localization of significant rCBF changes. 4. Compared with visual fixation, performing visually guided saccades led to a significant bilateral activation in FEF, cerebellum, striate cortex, and posterior temporal cortex. Right posterior thalamus activation was also observed. 5. The visually guided saccade task served as the comparison task for the ODR, antisaccade, and conditional antisaccade tasks for identification of task-related changes in rCBF beyond those associated with saccade execution. Performance on the ODR task was associated with a bilateral increase of rCBF in FEFs, SMA, dorsolateral prefrontal cortex (DLPFC), and posterior parietal cortex. The cortical regions of increased regional blood flow during the ODR task also showed increased rCBF during the antisaccade task; however, FEF and SMA activations were significant only in the right hemisphere. These findings closely parallel those of single-cell recording studies with behaving monkeys in indicating that FEF, DLPFC, SMA, and posterior parietal cortex perform computational activity for voluntary purposive saccades. 6. Comparison of PET scans obtained during performance of eye movement and hand movement tasks indicated that peak activations in FEF were located approximately 2 cm lateral and 1 cm anterior to those of hand-related motor cortex. The oculomotor area of SMA, the supplementary eye field (SEF), was located approximately 7-8 mm anterior and superior to the hand-related area of SMA. 7. During performance of antisaccade and ODR tasks, rCBF was significantly lower in ventromedial prefrontal cortex (PFC), along the rectus gyrus, and in ventral anterior cingulate cortex than during the visually guided saccade and fixation tasks. During the antisaccade task, the ventral region of lower rCBF involved medial structures including left ventral striatum and bilateral medial temporal-limbic cortex. During the ODR task, the ventral aspect of the region of lower rCBF extended laterally, rather than medially, to include the temporal poles. The lower blood flow observed in ventromedial PFC during both the antisaccade and ODR tasks, relative to the visually guided saccade and fixation tasks, suggests that modulation of output from ventromedial PFC to limbic cortex and the striatum may play a role in the voluntary control of saccadic eye movements, possibly in the suppression of responses that would interrupt


2000 ◽  
Vol 10 (4-5) ◽  
pp. 227-238
Author(s):  
Claire C. Gianna ◽  
Michael A. Gresty ◽  
Adolfo M. Bronstein

Visual modulation of the linear vestibulo-ocular reflex (LVOR) was investigated in 4 normal subjects exposed to translational interaural transient accelerations of 0.08 g and 0.17 g. Binocular eye movements were recorded with the scleral search-coil technique. LVOR modulation with target proximity was studied using earth-fixed targets at distances of 30 and 60 cm (LVOR-E). LVOR suppression (LVOR-S) was provoked by similar targets which were head-fixed. For both conditions, linear acceleration evoked compensatory slow-phases whose velocities were, from onset, enhanced in proportion to acceleration and target proximity. At 80 ms after motion onset, i.e. before visually-guided eye movements could aid target fixation, gains (eye velocity/ relative target velocity) during LVOR-E averaged 0.32 (S.D. 0.07) over all combinations of accelerations and target distances. At this time, eye velocities for LVOR-S were on average 33% for LVOR-E ( 1 . 8 ∘ /s vs. 2 . 7 ∘ /s). During LVOR-S, a marked suppression of eye movements appeared at 102 ms (S.D. 10 ms). We conclude that mechanisms other than pursuit can be used to attenuate the LVOR at < 80 ms but their effect is weak. The marked suppression observed around 100 ms might be due to an early visual effect on vestibular pathways or by some independent voluntary control mechanism.


2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


2019 ◽  
Vol 5 (1) ◽  
pp. 247-268 ◽  
Author(s):  
Peter Thier ◽  
Akshay Markanday

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


1999 ◽  
Vol 22 (1) ◽  
pp. 241-259 ◽  
Author(s):  
Jeffrey D. Schall ◽  
Kirk G. Thompson

2009 ◽  
Vol 101 (6) ◽  
pp. 2889-2897 ◽  
Author(s):  
Andre Kaminiarz ◽  
Kerstin Königs ◽  
Frank Bremmer

Different types of fast eye movements, including saccades and fast phases of optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN), are coded by only partially overlapping neural networks. This is a likely cause for the differences that have been reported for the dynamic parameters of fast eye movements. The dependence of two of these parameters—peak velocity and duration—on saccadic amplitude has been termed “main sequence.” The main sequence of OKAN fast phases has not yet been analyzed. These eye movements are unique in that they are generated by purely subcortical control mechanisms and that they occur in complete darkness. In this study, we recorded fast phases of OKAN and OKN as well as visually guided and spontaneous saccades under identical background conditions because background characteristics have been reported to influence the main sequence of saccades. Our data clearly show that fast phases of OKAN and OKN differ with respect to their main sequence. OKAN fast phases were characterized by their lower peak velocities and longer durations compared with those of OKN fast phases. Furthermore we found that the main sequence of spontaneous saccades depends heavily on background characteristics, with saccades in darkness being slower and lasting longer. On the contrary, the main sequence of visually guided saccades depended on background characteristics only very slightly. This implies that the existence of a visual saccade target largely cancels out the effect of background luminance. Our data underline the critical role of environmental conditions (light vs. darkness), behavioral tasks (e.g., spontaneous vs. visually guided), and the underlying neural networks for the exact spatiotemporal characteristics of fast eye movements.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
John-Ross Rizzo ◽  
Todd Hudson ◽  
Briana Kowal ◽  
Michal Wiseman ◽  
Preeti Raghavan

Introduction: Visual abnormalities and manual motor control have been studied extensively after stroke, but an understanding of oculomotor control post-stroke has not. Recent studies have revealed that in visually guided reaches arm movements are planned during eye movement execution, which may contribute to increased task complexity. In fact, in healthy controls during visually guided reaches, the onset of eye movement is delayed, its velocity reduced, and endpoint errors are larger relative to isolated eye movements. Our objective in this experiment was to examine the temporal properties of eye movement execution for stroke patients with no diagnosed visual impairment. The goal is to improve understanding of oculomotor control in stroke relative to normal function, and ultimately further understand its coordination with manual motor control during joint eye and hand movements. We hypothesized that stroke patients would show abnormal initiation or onset latency for saccades made in an eye movement task, as compared to healthy controls. Methods: We measured the kinematics of eye movements during point-to-point saccades; there was an initial static, fixation point and the stimulus was a flashed target on a computer monitor. We used a video-based eye tracker for objective recording of the eye at a sampling frequency of 2000 Hz (SR Research, Eyelink). 10 stroke subjects, over 4 months from injury and with no diagnosed visual impairment, and 10 healthy controls completed 432 saccades in a serial fashion. Results: Stroke patients had significantly faster onset latencies as compared to healthy controls during saccades (99.5ms vs. 245.2ms, p=0.00058). Conclusion: A better understanding of the variations in oculomotor control post-stroke, which may go unnoticed during clinical assessment, may improve understanding of how eye control synchronizes with arm or manual motor control. This knowledge could assist in tailoring rehabilitative strategies to amplify motor recovery. For next steps, we will perform objective eye and hand recordings during visually guided reaches post-stroke to better understand the harmonization or lack thereof after neurologic insult.


2013 ◽  
Vol 110 (3) ◽  
pp. 732-747 ◽  
Author(s):  
T. Scott Murdison ◽  
Chanel A. Paré-Bingley ◽  
Gunnar Blohm

To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space ( Blohm and Lefèvre 2010 ). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.


Sign in / Sign up

Export Citation Format

Share Document