scholarly journals Gene conversion explains elevated diversity in the immunity modulating APL1 gene of the malaria vector Anopheles funestus

2021 ◽  
Author(s):  
Jack Hearn ◽  
Jacob Riveron ◽  
Helen Irving ◽  
Gareth D Weedall ◽  
Charles S. Wondji

The leucine rich repeat gene APL1 is a key component of immunity to Plasmodium and other microbial pathogens in Anopheles mosquitoes. In the malaria vector Anopheles funestus the APL1 gene has four paralogues which occur along the same chromosome arm. We show that APL1 has exceptional levels of non-synonymous polymorphism across the range of An. funestus with an average πn of 0.027 versus a genome-wide average of 0.002, and πn (and πs) is consistently high in populations across Africa. The pattern of APL1 diversity was consistent between independent pooled-template and target-enrichment datasets, however no link between APL1 diversity and insecticide-resistance was observed with the phenotyped target-enrichment dataset. Two further innate immunity genes of the gambicin anti-microbial peptide family had πn/πs ratios greater than one, possibly driven by either positive or balancing selection. Cecropin antimicrobial peptides were expressed much more highly than other anti-microbial peptide genes, an observation discordant with current models of anti-microbial peptide activity. The observed APL1 diversity likely results from gene conversion between paralogs, as evidenced by shared polymorphisms, overlapping read mappings, and recombination events among paralogues. Gene conversion at APL1 versus alternative explanations is concordant with similarly elevated diversity in APL1 and TEP1 loci in An. gambiae. In contrast, the more closely related An. stephensi which also encodes a single-copy of APL1 does not show this elevated diversity. We hypothesise that a more open chromatin formation at the APL1 locus due to higher gene expression than its paralogues enhances gene conversion, and therefore increased polymorphism, at APL1.

2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Rousseau J. Djouaka ◽  
Seun M. Atoyebi ◽  
Genevieve M. Tchigossou ◽  
Jacob M. Riveron ◽  
Helen Irving ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Edwin A. Solares ◽  
Yuan Tao ◽  
Anthony D. Long ◽  
Brandon S. Gaut

Abstract Background Despite marked recent improvements in long-read sequencing technology, the assembly of diploid genomes remains a difficult task. A major obstacle is distinguishing between alternative contigs that represent highly heterozygous regions. If primary and secondary contigs are not properly identified, the primary assembly will overrepresent both the size and complexity of the genome, which complicates downstream analysis such as scaffolding. Results Here we illustrate a new method, which we call HapSolo, that identifies secondary contigs and defines a primary assembly based on multiple pairwise contig alignment metrics. HapSolo evaluates candidate primary assemblies using BUSCO scores and then distinguishes among candidate assemblies using a cost function. The cost function can be defined by the user but by default considers the number of missing, duplicated and single BUSCO genes within the assembly. HapSolo performs hill climbing to minimize cost over thousands of candidate assemblies. We illustrate the performance of HapSolo on genome data from three species: the Chardonnay grape (Vitis vinifera), with a genome of 490 Mb, a mosquito (Anopheles funestus; 200 Mb) and the Thorny Skate (Amblyraja radiata; 2650 Mb). Conclusions HapSolo rapidly identified candidate assemblies that yield improvements in assembly metrics, including decreased genome size and improved N50 scores. Contig N50 scores improved by 35%, 9% and 9% for Chardonnay, mosquito and the thorny skate, respectively, relative to unreduced primary assemblies. The benefits of HapSolo were amplified by down-stream analyses, which we illustrated by scaffolding with Hi-C data. We found, for example, that prior to the application of HapSolo, only 52% of the Chardonnay genome was captured in the largest 19 scaffolds, corresponding to the number of chromosomes. After the application of HapSolo, this value increased to ~ 84%. The improvements for the mosquito’s largest three scaffolds, representing the number of chromosomes, were from 61 to 86%, and the improvement was even more pronounced for thorny skate. We compared the scaffolding results to assemblies that were based on PurgeDups for identifying secondary contigs, with generally superior results for HapSolo.


Genetics ◽  
2021 ◽  
Author(s):  
Takahiro Sakamoto ◽  
Hideki Innan

Abstract Muller’s ratchet is a process in which deleterious mutations are fixed irreversibly in the absence of recombination. The degeneration of the Y chromosome, and the gradual loss of its genes, can be explained by Muller’s ratchet. However, most theories consider single-copy genes, and may not be applicable to Y chromosomes, which have a number of duplicated genes in many species, which are probably undergoing concerted evolution by gene conversion. We developed a model of Muller’s ratchet to explore the evolution of the Y chromosome. The model assumes a non-recombining chromosome with both single-copy and duplicated genes. We used analytical and simulation approaches to obtain the rate of gene loss in this model, with special attention to the role of gene conversion. Homogenization by gene conversion makes both duplicated copies either mutated or intact. The former promotes the ratchet, and the latter retards, and we ask which of these counteracting forces dominates under which conditions. We found that the effect of gene conversion is complex, and depends upon the fitness effect of gene duplication. When duplication has no effect on fitness, gene conversion accelerates the ratchet of both single-copy and duplicated genes. If duplication has an additive fitness effect, the ratchet of single-copy genes is accelerated by gene duplication, regardless of the gene conversion rate, whereas gene conversion slows the degeneration of duplicated genes. Our results suggest that the evolution of the Y chromosome involves several parameters, including the fitness effect of gene duplication by increasing dosage and gene conversion rate.


2022 ◽  
Vol 12 ◽  
Author(s):  
Inge Holm ◽  
Luisa Nardini ◽  
Adrien Pain ◽  
Emmanuel Bischoff ◽  
Cameron E. Anderson ◽  
...  

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences.Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.


Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 125-133 ◽  
Author(s):  
N L Glass ◽  
L Lee

Abstract In the filamentous fungus, Neurospora crassa, mating type is regulated by a single locus with alternate alleles, termed A and a. The mating type alleles control entry into the sexual cycle, but during vegetative growth they function to elicit heterokaryon incompatibility, such that fusion of A and a hypha results in death of cells along the fusion point. Previous studies have shown that the A allele consists of 5301 bp and has no similarity to the a allele; it is found as a single copy and only within the A genome. The a allele is 3235 bp in length and it, too, is found as a single copy within the a genome. Within the A sequence, a single open reading frame (ORF) of 288 amino acids (mt A-1) is thought to confer fertility and heterokaryon incompatibility. In this study, we have used repeat induced point (RIP) mutation to identify functional regions of the A idiomorph. RIP mutations in mt A-1 resulted in the isolation of sterile, heterokaryon-compatible mutants, while RIP mutations generated in a region outside of mt A-1 resulted in the isolation of mutants capable of mating, but deficient in ascospore formation.


2019 ◽  
Author(s):  
Zachary L. Fuller ◽  
Veronique J.L. Mocellin ◽  
Luke Morris ◽  
Neal Cantin ◽  
Jihanne Shepherd ◽  
...  

AbstractAlthough reef-building corals are rapidly declining worldwide, responses to bleaching vary both within and among species. Because these inter-individual differences are partly heritable, they should in principle be predictable from genomic data. Towards that goal, we generated a chromosome-scale genome assembly for the coral Acropora millepora. We then obtained whole genome sequences for 237 phenotyped samples collected at 12 reefs distributed along the Great Barrier Reef, among which we inferred very little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin. We further used 213 of the samples to conduct a genome-wide association study of visual bleaching score, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for the use of genomics-based approaches in conservation strategies.


2021 ◽  
Author(s):  
Cushla J Metcalfe ◽  
Jingchuan Li ◽  
Bangyou Zheng ◽  
Jiri Stiller ◽  
Adam Healey ◽  
...  

Abstract The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry, however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridisation (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.


Sign in / Sign up

Export Citation Format

Share Document