scholarly journals Molecular mechanism of claudin-15 strand flexibility

2021 ◽  
Author(s):  
Shadi Fuladi ◽  
Sarah McGuinness ◽  
Le Shen ◽  
Christopher R. Weber ◽  
Fatemeh Khalili-Araghi

Claudins are one of the major components of tight junctions that play a key role in formation and maintaining epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with experiments leading to a curvature of 0.12 nm−1 at room temperature. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between four linear claudin strands in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over sub-micrometer length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on the inter-molecular interactions and their role in maintaining epithelial barrier function.

2020 ◽  
Author(s):  
Taichi Sugawara ◽  
Kyoko Furuse ◽  
Tetsuhisa Otani ◽  
Mikio Furuse

AbstractTricellular tight junctions (tTJs) are specialized tight junctions (TJs) that seal the intercellular space at tricellular contacts (TCs), where the vertices of three epithelial cells meet. Tricellulin and angulin family membrane proteins are known constituents of tTJs, but the molecular mechanism of tTJ formation remains elusive. Here, we investigated the roles of angulin-1 and tricellulin in tTJ formation in MDCK II cells by genome editing. Angulin-1-deficient cells lost the plasma membrane contact at TCs with impaired epithelial barrier function. The COOH-terminus of angulin-1 bound to the TJ scaffold protein ZO-1 and disruption of their interaction influenced the localization of claudins at TCs, but not the tricellular sealing. Strikingly, the plasma membrane contact at TCs was formed in tricellulin- or claudin-deficient cells. These findings demonstrate that angulin-1 is responsible for the plasma membrane seal at TCs independently of tricellulin and claudins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aubrey N. Michi ◽  
Bryan G. Yipp ◽  
Antoine Dufour ◽  
Fernando Lopes ◽  
David Proud

AbstractHuman rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function. We observe that early HRV-C15 infection induces a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induces ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1α regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.


2010 ◽  
Vol 4 (5) ◽  
pp. 637-651 ◽  
Author(s):  
Susanne A Snoek ◽  
Marleen I Verstege ◽  
Guy E Boeckxstaens ◽  
René M van den Wijngaard ◽  
Wouter J de Jonge

2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100393 ◽  
Author(s):  
Ilene K. Gipson ◽  
Sandra Spurr-Michaud ◽  
Ann Tisdale ◽  
Balaraj B. Menon

Sign in / Sign up

Export Citation Format

Share Document