scholarly journals Simultaneous quantification of ankle, muscle, and tendon impedance in humans

2021 ◽  
Author(s):  
Kristen L Jakubowski ◽  
Daniel Ludvig ◽  
Daniel Bujnowski ◽  
Sabrina Lee ◽  
Eric J Perreault

Objective: Regulating the impedance of our joints is essential for the effective control of posture and movement. The impedance of a joint is governed mainly by the mechanical properties of the muscle-tendon units spanning it. Many studies have quantified the net impedance of joints but not the specific contributions from the muscles and tendons. The inability to quantify both muscle and tendon impedance limits the ability to determine the causes underlying altered movement control associated with aging, neuromuscular injury, and other conditions that have different effects on muscle and tendon properties. Therefore, we developed a technique to quantify joint, muscle, and tendon impedance simultaneously and evaluated this technique at the human ankle. Methods: We used a single degree of freedom actuator to deliver pseudorandom rotations to the ankle while measuring the corresponding torques. We simultaneously measured the displacement of the medial gastrocnemius muscle-tendon junction with B-mode ultrasound. From these experimental measurements, we were able to estimate ankle, muscle, and tendon impedance using non-parametric system identification. Results: We validated our estimates by comparing them to previously reported muscle and tendon stiffness, the position-dependent component of impedance, to demonstrate that our technique generates reliable estimates of these properties. Conclusion: Our approach can be used to clarify the respective contributions from the muscle and tendon to the net mechanics of a joint. Significance: This is a critical step forward in the ultimate goal of understanding how muscles and tendons govern ankle impedance during posture and movement.

2014 ◽  
Vol 117 (9) ◽  
pp. 1020-1026 ◽  
Author(s):  
Keitaro Kubo

The aims of this study were to 1) directly assess active muscle stiffness according to actual length changes in muscle fibers (fascicles) during short range stretching; and 2) compare actual measured active muscle and tendon stiffness using ultrasonography with the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in series elastic component of plantar flexors using the alpha method. Twenty-four healthy men volunteered for this study. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions [10, 30, 50, 70, and 90% maximal voluntary contractions (MVC)]. Using the variables measured during this fast stretch experiment, the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in plantar flexors was assessed using alpha method. Tendon stiffness was determined during isometric plantar flexion by ultrasonography. Active muscle stiffness increased with the exerted torque levels. At 30, 50, 70, and 90% MVC, there were no significant correlations between muscle stiffness using ultrasonography and stiffness of active part (i.e., muscle) by alpha method, although this relationship at 10% MVC was significant ( r = 0.552, P = 0.005). In addition, no correlation was noted in tendon stiffness between the two different methods ( r = 0.226, P = 0.209). The present study demonstrated that ultrasonography could quantified active muscle stiffness in vivo. Furthermore, active muscle stiffness and tendon stiffness using ultrasonography were not related to active (i.e., muscle) or passive (i.e., tendon) stiffness in series elastic component of plantar flexors by alpha method.


Gerontology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Rebecca L. Krupenevich ◽  
Owen N. Beck ◽  
Gregory S. Sawicki ◽  
Jason R. Franz

Older adults walk slower and with a higher metabolic energy expenditure than younger adults. In this review, we explore the hypothesis that age-related declines in Achilles tendon stiffness increase the metabolic cost of walking due to less economical calf muscle contractions and increased proximal joint work. This viewpoint may motivate interventions to restore ankle muscle-tendon stiffness, improve walking mechanics, and reduce metabolic cost in older adults.


2009 ◽  
Vol 106 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of static stretch on muscle and tendon mechanical properties and muscle activation were studied in fifteen healthy human volunteers. Peak active and passive moment data were recorded during plantar flexion trials on an isokinetic dynamometer. Electromyography (EMG) monitoring of the triceps surae muscles, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Subjects performed three 60-s static stretches before being retested 2 min and 30 min poststretch. There were three main findings in the present study. First, peak concentric moment was significantly reduced after stretch; 60% of the deficit recovered 30 min poststretch. This was accompanied by, and correlated with ( r = 0.81 ; P < 0.01) reductions in peak triceps surae EMG amplitude, which was fully recovered at 30 min poststretch. Second, Achilles tendon length was significantly shorter during the concentric contraction after stretch and at 30 min poststretch; however, no change in tendon stiffness was detected. Third, passive joint moment was significantly reduced after stretch, and this was accompanied by significant reductions in medial gastrocnemius passive muscle stiffness; both measures fully recovered by 30 min poststretch. These data indicate that the stretching protocol used in this study induced losses in concentric moment that were accompanied by, and related to, reductions in neuromuscular activity, but they were not associated with alterations in tendon stiffness or shorter muscle operating length. Reductions in passive moment were associated with reductions in muscle stiffness, whereas tendon mechanics were unaffected by the stretch. Importantly, the impact on mechanical properties and neuromuscular activity was minimal at 30 min poststretch.


Neuroscience ◽  
1981 ◽  
Vol 6 (4) ◽  
pp. 725-739 ◽  
Author(s):  
R.F. Mayer ◽  
R.E. Burke ◽  
J. Toop ◽  
J.A. Hodgson ◽  
K. Kanda ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 34-38
Author(s):  
Thomas D. O’Brien

Children develop lower levels of muscle force, and at slower rates, than adults. While strength training in children is expected to reduce this differential, a synchronous adaptation in the tendon must be achieved to ensure forces continue to be transmitted to the skeleton with efficiency while minimizing the risk of strainrelated tendon injury. We hypothesized that resistance training (RT) would alter tendon mechanical properties in children concomitantly with changes in force production characteristics. Twenty prepubertal children (8.9 ± 0.3 years) were equally divided into control (nontraining) and experimental (training) groups. The training group completed a 10-week RT intervention consisting of 2-3 sets of 8-15 plantar flexion contractions performed twice weekly on a recumbent calf raise machine. Achilles tendon properties (cross-sectional area, elongation, stress, strain, stiffness and Young’s modulus), electromechanical delay (EMD; time between the onset of muscle activity and force), rate of force development (RFD; slope of the force-time curve) and rate of EMG increase (REI; slope of the EMG-time curve) were measured before and after RT. Tendon stiffness and Young’s modulus increased significantly after RT in the experimental group only (~29% and ~25%, respectively); all other tendon properties were not significantly altered, although there were mean decreases in both peak tendon strain and strain at a given force level (14% and 24%, respectively, n.s) which may have implications for tendon injury risk and muscle fiber mechanics. A ~13% decrease in EMD was found after RT for the experimental group which paralleled the increase in tendon stiffness (r = −0.59), however RFD and REI were unchanged. The present data show that the Achilles tendon adapts to RT in prepubertal children and is paralleled by a change in EMD, although the magnitude of this change did not appear to be sufficient to influence RFD. These findings are of potential importance within the context of the efficiency and execution of movement.


Sign in / Sign up

Export Citation Format

Share Document