scholarly journals Boron Supply Restores Aluminum-Blocked Auxin Transport by Modulation PIN2 Trafficking in the Arabidopsis Roots

2021 ◽  
Author(s):  
Lin Tao ◽  
Yingming Feng ◽  
Yalin Li ◽  
Xuewen Li ◽  
Xiaodong Meng ◽  
...  

AbstractThis study tested a hypothesis that boron (B) supply alleviates aluminum (Al) toxicity by modifying auxin distribution in functionally different root zones. Auxin distribution and transport at various Al and B ratios were analyzed using the range of molecular and imaging techniques. Al stress resulted in increased auxin accumulation in root apical meristem (MZ) and transition zones (TZ) while reducing its content in elongation zone (EZ). This phenomenon was explained by reduction in basipetal auxin transport caused by Al blockage of PIN2 endocytosis, regulated at posttranscriptional level. This inhibition of PIN2 endocytosis was dependent on actin filaments and microtubules. B supply facilitated the endocytosis and exocytosis of PIN2 carriers via recycling endosomes conjugated with IAA to modify Al-induced auxin depletion in the EZ. However, disruption of auxin signaling with auxinole did not alleviate Al-induced inhibition of root growth. B supply alleviates Al-induced inhibition of root growth via restoring the endocytic recycling of PIN2 proteins involved in the basipetal (shootward) auxin transport, restoring Al-induced auxin depletion in the elongation zone.Short summaryAluminum-intensified PIN2 abundance, nontranscriptional, via repressing PIN2 endocytosis to block polar auxin transport, and this adverse effect could be alleviated by boron supply.

2018 ◽  
Author(s):  
Zi-Qing Miao ◽  
Ping-Xia Zhao ◽  
Jie-Li Mao ◽  
Lin-Hui Yu ◽  
Yang Yuan ◽  
...  

AbstractThe gaseous hormone ethylene participates in many physiological processes of plants. It is well known that ethylene-inhibited root elongation involves basipetal auxin delivery requiring PIN2. However, the molecular mechanism how ethylene regulates PIN2 is not well understood. Here, we report that the ethylene-responsive HD-Zip gene HB52 is involved in ethylene-mediated inhibition of primary root elongation. Using biochemical and genetic analyses, we demonstrated that HB52 is ethylene-responsive and acts immediately downstream of EIN3. HB52 knock-down mutants are insensitive to ethylene in primary root elongation while the overexpression lines have dramatically shortened roots like ethylene treated plants. Moreover, HB52 upregulates PIN2, WAG1, and WAG2 by directly binding to their promoter, leading to an enhanced basipetal auxin delivery to the elongation zone and thus inhibiting root growth. Our work uncovers HB52 as an important crosstalk node between ethylene signaling and auxin transport in root elongation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


2009 ◽  
Vol 36 (11) ◽  
pp. 938 ◽  
Author(s):  
Nima Yazdanbakhsh ◽  
Joachim Fisahn

Plant organ phenotyping by non-invasive video imaging techniques provides a powerful tool to assess physiological traits and biomass production. We describe here a range of applications of a recently developed plant root monitoring platform (PlaRoM). PlaRoM consists of an imaging platform and a root extension profiling software application. This platform has been developed for multi parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. PlaRoM can investigate root extension profiles of different genotypes in various growth conditions (e.g. light protocol, temperature, growth media). In particular, we present primary root growth kinetics that was collected over several days. Furthermore, addition of 0.01% sucrose to the growth medium provided sufficient carbohydrates to maintain reduced growth rates in extended nights. Further analysis of records obtained from the imaging platform revealed that lateral root development exhibits similar growth kinetics to the primary root, but that root hairs develop in a faster rate. The compatibility of PlaRoM with currently accessible software packages for studying root architecture will be discussed. We are aiming for a global application of our collected root images to analytical tools provided in remote locations.


PLoS Genetics ◽  
2006 ◽  
Vol 2 (11) ◽  
pp. e202 ◽  
Author(s):  
Richard Sibout ◽  
Poornima Sukumar ◽  
Chamari Hettiarachchi ◽  
Magnus Holm ◽  
Gloria K. Muday ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
pp. 437
Author(s):  
Meng Wang ◽  
Panpan Li ◽  
Yao Ma ◽  
Xiang Nie ◽  
Markus Grebe ◽  
...  

Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (β-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 236
Author(s):  
María Belén Cuadrado-Pedetti ◽  
Inés Rauschert ◽  
María Martha Sainz ◽  
Vítor Amorim-Silva ◽  
Miguel Angel Botella ◽  
...  

Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.


2013 ◽  
Vol 163 (3) ◽  
pp. 1306-1322 ◽  
Author(s):  
Zhaobin Dong ◽  
Chuan Jiang ◽  
Xiaoyang Chen ◽  
Tao Zhang ◽  
Lian Ding ◽  
...  

2018 ◽  
Author(s):  
Thea van den Berg ◽  
Kirsten H. ten Tusscher

AbstractThe root system is a major determinant of plant fitness. Its capacity to supply the plant with sufficient water and nutrients strongly depends on root system architecture, which arises from the repeated branching off of lateral roots. A critical first step in lateral root formation is priming, which prepatterns sites competent of forming a lateral root. Priming is characterized by temporal oscillations in auxin, auxin signalling and gene expression in the root meristem, which through growth become transformed into a spatially repetitive pattern of competent sites. Previous studies have demonstrated the importance of auxin synthesis, transport and perception for the amplitude of these oscillations and their chances of producing an actual competent site. Additionally, repeated lateral root cap apoptosis was demonstrated to be strongly correlated with repetitive lateral root priming. Intriguingly, no single mutation has been identified that fully abolishes lateral root formation, and thusfar the mechanism underlying oscillations has remained unknown. In this study, we investigated the impact of auxin reflux loop properties combined with root growth dynamics on priming, using a computational approach. To this end we developed a novel multi-scale root model incorporating a realistic root tip architecture and reflux loop properties as well as root growth dynamics. Excitingly, in this model, repetitive auxin elevations automatically emerge. First, we show that root tip architecture and reflux loop properties result in an auxin loading zone at the start of the elongation zone, with preferential auxin loading in narrow vasculature cells. Second, we demonstrate how meristematic root growth dynamics causes regular alternations in the sizes of cells arriving at the elongation zone, which subsequently become amplified during cell expansion. These cell size differences translate into differences in cellular auxin loading potential. Combined, these properties result in temporal and spatial fluctuations in auxin levels in vasculature and pericycle cells. Our model predicts that temporal priming frequency predominantly depends on cell cycle duration, while cell cycle duration together with meristem size control lateral root spacing.


Sign in / Sign up

Export Citation Format

Share Document