scholarly journals A conserved viral amphipathic helix governs the replication site-specific membrane association

2021 ◽  
Author(s):  
Preethi Sathanantham ◽  
Xiaofeng Wang

Positive-strand RNA viruses assemble their viral replication complexes (VRCs) on specific host organelle membranes, yet it is unclear how viral replication proteins recognize and what motifs or domains in viral replication proteins determine their localizations. We show here that an amphipathic helix, helix B in replication protein 1a of brome mosaic virus (BMV), is necessary for 1a's localization to the nuclear endoplasmic reticulum (ER) membrane where BMV assembles its VRCs. Helix B is also sufficient to target soluble proteins to the nuclear ER membrane in yeast and plant cells. We further show that an equivalent helix in several plant- and human-infecting viruses of the alphavirus-like superfamily targets fluorescent proteins to the organelle membranes where they form their VRCs, including ER, vacuole, and Golgi membranes. Our work reveals a conserved helix that governs the localization of VRCs among a group of viruses and points to a possible target for developing broad-spectrum antiviral strategies.

2016 ◽  
Vol 113 (8) ◽  
pp. E1064-E1073 ◽  
Author(s):  
Jiantao Zhang ◽  
Zhenlu Zhang ◽  
Vineela Chukkapalli ◽  
Jules A. Nchoutmboube ◽  
Jianhui Li ◽  
...  

All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting theCHO2gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes.


1999 ◽  
Vol 73 (12) ◽  
pp. 10303-10309 ◽  
Author(s):  
María Restrepo-Hartwig ◽  
Paul Ahlquist

ABSTRACT The universal membrane association of positive-strand RNA virus RNA replication complexes is implicated in their function, but the intracellular membranes used vary among viruses. Brome mosaic virus (BMV) encodes two mutually interacting RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and the polymerase-like 2a protein. In cells from the natural plant hosts of BMV, 1a and 2a colocalize on the endoplasmic reticulum (ER). 1a and 2a also direct BMV RNA replication and subgenomic mRNA synthesis in the yeast Saccharomyces cerevisiae, but whether the distribution of 1a, 2a, and active replication complexes in yeast duplicates that in plant cells has not been determined. For yeast expressing 1a and 2a and replicating BMV genomic RNA3, we used double-label confocal immunofluorescence to define the localization of 1a, 2a, and viral RNA and to explore the determinants of replication complex targeting. As in plant cells, 1a and 2a colocalized on and were retained on the yeast ER, with no detectable accumulation in the Golgi apparatus. 1a and 2a were distributed over most of the ER surface, with strongest accumulation on the perinuclear ER. In vivo labeling with bromo-UTP showed that the sites of 1a and 2a accumulation were the sites of nascent viral RNA synthesis. In situ hybridization showed that completed viral RNA products accumulated predominantly in the immediate vicinity of replication complexes but that some, possibly more mature cells also accumulated substantial viral RNA in the surrounding cytoplasm distal to replication complexes. Additionally, we find that 1a localizes to the ER when expressed in the absence of other viral factors. These results show that BMV RNA replication in yeast duplicates the normal localization of replication complexes, reveal the intracellular distribution of RNA replication products, and show that 1a is at least partly responsible for the ER localization and retention of the RNA replication complex.


2006 ◽  
Vol 80 (17) ◽  
pp. 8316-8328 ◽  
Author(s):  
Hernan Garcia-Ruiz ◽  
Paul Ahlquist

ABSTRACT To facilitate RNA recombination studies, we tested whether Saccharomyces cerevisiae, which supports brome mosaic virus (BMV) replication, also supports BMV RNA recombination. Yeast strains expressing BMV RNA replication proteins 1a and 2apol were engineered to transiently coexpress two independently inducible, overlapping, nonreplicating derivatives of BMV genomic RNA3. B3Δ3′ lacked the coat protein gene and negative-strand RNA promoter. B3Δ5′ lacked the positive-strand RNA promoter and had the coat gene replaced by the selectable URA3 gene. After 12 to 72 h of induction, B3Δ3′ and B3Δ5′ transcription was repressed and Ura+ yeast cells were selected. All Ura+ cells contained recombinant RNA3 replicons expressing URA3. Most replicons arose by intermolecular homologous recombination between B3Δ3′ and B3Δ5′. Such recombinants were isolated only when 1a and 2apol were expressed and after transient transcription of both B3Δ3′ and B3Δ5′, showing that recombination occurred at the RNA, not DNA, level. A minority of URA3-expressing replicons were derived from B3Δ5′, independently of B3Δ3′, by 5′ truncation and modification, generating novel positive-strand promoters and demonstrating that BMV can give rise to subgenomic RNA replicons. Intermolecular B3Δ3′-B3Δ5′ recombination occurred only when both parental RNAs bore a functional, cis-acting template recognition and recruitment element targeting viral RNAs to replication complexes. The results imply that recombination occurred in RNA replication complexes to which parental RNAs were independently recruited. Moreover, the ability to obtain intermolecular recombinants at precisely measurable, reproducible frequencies, to control genetic background and induction conditions, and other features of this system will facilitate further studies of virus and host functions in RNA recombination.


2006 ◽  
Vol 80 (1) ◽  
pp. 246-251 ◽  
Author(s):  
Antonio Mas ◽  
Isabel Alves-Rodrigues ◽  
Amine Noueiry ◽  
Paul Ahlquist ◽  
Juana Díez

ABSTRACT The genomes of positive-strand RNA [(+)RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of (+)RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved in this step, their nature is largely unknown. By using the ability of the higher eukaryotic (+)RNA virus brome mosaic virus (BMV) to replicate in yeast, we previously showed that the host Lsm1p protein is required for efficient recruitment of BMV RNA from translation to replication. Here we show that in addition to Lsm1p, all tested components of the Lsm1p-7p/Pat1p/Dhh1p decapping activator complex, which functions in deadenylation-dependent decapping of cellular mRNAs, are required for BMV RNA recruitment for RNA replication. In contrast, other proteins of the decapping machinery, such as Edc1p and Edc2p from the deadenylation-dependent decapping pathway and Upf1p, Upf2p, and Upf3p from the deadenylation-independent decapping pathway, had no significant effects. The dependence of BMV RNA recruitment on the Lsm1p-7p/Pat1p/Dhh1p complex was linked exclusively to the 3′ noncoding region of the BMV RNA. Collectively, our results suggest that the Lsm1p-7p/Pat1p/Dhh1p complex that transfers cellular mRNAs from translation to degradation might act as a key regulator in the switch from BMV RNA translation to replication.


1998 ◽  
Vol 72 (9) ◽  
pp. 7160-7169 ◽  
Author(s):  
Erin K. O’Reilly ◽  
Zhaohui Wang ◽  
Roy French ◽  
C. Cheng Kao

ABSTRACT Brome mosaic virus (BMV), a positive-strand RNA virus, encodes two replication proteins: the 2a protein, which contains polymerase-like sequences, and the 1a protein, with N-terminal putative capping and C-terminal helicase-like sequences. These two proteins are part of a multisubunit complex which is necessary for viral RNA replication. We have previously shown that the yeast two-hybrid assay consistently duplicated results obtained from in vivo RNA replication assays and biochemical assays of protein-protein interaction, thus permitting the identification of additional interacting domains. We now map an interaction found to take place between two 1a proteins. Using previously characterized 1a mutants, a perfect correlation was found between the in vivo phenotypes of these mutants and their abilities to interact with wild-type 1a (wt1a) and each other. Western blot analysis revealed that the stabilities of many of the noninteracting mutant proteins were similar to that of wt1a. Deletion analysis of 1a revealed that the N-terminal 515 residues of the 1a protein are required and sufficient for 1a-1a interaction. This intermolecular interaction between the putative capping domain and itself was detected in another tripartite RNA virus, cucumber mosaic virus (CMV), suggesting that the 1a-1a interaction is a feature necessary for the replication of tripartite RNA viruses. The boundaries for various activities are placed in the context of the predicted secondary structures of several 1a-like proteins of members of the alphavirus-like superfamily. Additionally, we found a novel interaction between the putative capping and helicase-like portions of the BMV and CMV 1a proteins. Our cumulative data suggest a working model for the assembly of the BMV RNA replicase.


2001 ◽  
Vol 75 (5) ◽  
pp. 2097-2106 ◽  
Author(s):  
Wai-Ming Lee ◽  
Masayuki Ishikawa ◽  
Paul Ahlquist

ABSTRACT All positive-strand RNA viruses assemble their RNA replication complexes on intracellular membranes. Brome mosaic virus (BMV) replicates its RNA in endoplasmic reticulum (ER)-associated complexes in plant cells and the yeast Saccharomyces cerevisiae. BMV encodes RNA replication factors 1a, with domains implicated in RNA capping and helicase functions, and 2a, with a central polymerase-like domain. Factor 1a interacts independently with the ER membrane, viral RNA templates, and factor 2a to form RNA replication complexes on the perinuclear ER. We show that BMV RNA replication is severely inhibited by a mutation in OLE1, an essential yeast chromosomal gene encoding Δ9 fatty acid desaturase, an integral ER membrane protein and the first enzyme in unsaturated fatty acid synthesis.OLE1 deletion and medium supplementation show that BMV RNA replication requires unsaturated fatty acids, not the Ole1 protein, and that viral RNA replication is much more sensitive than yeast growth to reduced unsaturated fatty acid levels. In ole1 mutant yeast, 1a still becomes membrane associated, recruits 2a to the membrane, and recognizes and stabilizes viral RNA templates normally. However, RNA replication is blocked prior to initiation of negative-strand RNA synthesis. The results show that viral RNA synthesis is highly sensitive to lipid composition and suggest that proper membrane fluidity or plasticity is essential for an early step in RNA replication. The strong unsaturated fatty acid dependence also demonstrates that modulating fatty acid balance can be an effective antiviral strategy.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1466
Author(s):  
Jobin Varkey ◽  
Jiantao Zhang ◽  
Junghyun Kim ◽  
Gincy George ◽  
Guijuan He ◽  
...  

Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not only binds to liposomes, but also remodels spherical liposomes into tubules. The membrane remodeling ability of this amphipathic alpha-helix is similar to that recognized in other amphipathic alpha-helices from cellular proteins involved in membrane remodeling, such as BAR domain proteins. Mutations affecting the hydrophobic face of the amphipathic alpha-helix severely compromised membrane remodeling of vesicles with physiologically relevant phospholipid composition. These mutations also affected the ability of poliovirus to form plaques indicative of reduced viral replication, further underscoring the importance of membrane remodeling by the amphipathic alpha-helix in possible relation to the formation of viral replication complexes.


2015 ◽  
Vol 28 (6) ◽  
pp. 675-688 ◽  
Author(s):  
Masayoshi Hashimoto ◽  
Ken Komatsu ◽  
Ryo Iwai ◽  
Takuya Keima ◽  
Kensaku Maejima ◽  
...  

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix–induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death–inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


2020 ◽  
Author(s):  
Felix Pahmeier ◽  
Christoper J Neufeldt ◽  
Berati Cerikan ◽  
Vibhu Prasad ◽  
Costantin Pape ◽  
...  

ABSTRACTPositive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of that are flaviviruses, such as dengue virus and Zika virus that cause millions of yearly infections and spread around the globe, and coronaviruses, such as SARS-CoV-2, which is the cause of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of virology research in determining mechanisms to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective interventions. Here, we describe the generation and characterization of a reporter system to visualize dengue virus and SARS-CoV-2 replication in live cells. The system is based on viral protease activity causing cleavage and nuclear translocation of an engineered fluorescent protein that is expressed in the infected cells. We show the suitability of the system for live cell imaging and visualization of single infected cells as well as for screening and testing of antiviral compounds. Given the modular building blocks, the system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCEReporter systems are useful tools for fast and quantitative visualization of viral replication and spread within a host cell population. Here we describe a reporter system that takes advantage of virus-encoded proteases that are expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the fluorescent protein translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


Sign in / Sign up

Export Citation Format

Share Document