scholarly journals Brain regulatory program predates central nervous system evolution

2021 ◽  
Author(s):  
Dylan Z. Faltine-Gonzalez ◽  
Jamie A Havrilak ◽  
Michael J Layden

Understanding if bilaterian centralized nervous systems (CNS) evolved once or multiple times has been debated for over a century. Recent efforts determined that the nerve chords found in bilaterian CNSs likely evolved independently, but the origin(s) of brains remains debatable. Developing brains are regionalized by stripes of gene expression along the anteroposterior axis. Gene homologs are expressed in the same relative order in disparate species, which has been interpreted as evidence for homology. However, regionalization programs resemble anteroposterior axial patterning programs, which supports an alternative model by which conserved expression in brains arose convergently through the independent co-option of deeply conserved axial patterning programs. To begin resolving these hypotheses, we sought to determine when the neurogenic role for axial programs evolved. Here we show that the nerve net in the cnidarian Nematostella vectensis and bilaterian brain are regionalized by the same molecular programs, which indicates nervous system regionalization predates the emergence of bilaterians and CNSs altogether. This argues that shared regionalization mechanisms are insufficient to support the homology of brains and supports the notion that axial programs were able to be co-opted multiple times during evolution of brains.

2004 ◽  
Vol 44 (6) ◽  
pp. 509-538 ◽  
Author(s):  
Jean-Marc Alessandri ◽  
Philippe Guesnet ◽  
Sylvie Vancassel ◽  
Pierre Astorg ◽  
Isabelle Denis ◽  
...  

Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 91-103 ◽  
Author(s):  
Hidehiko Sugino ◽  
Tomoko Toyama ◽  
Yusuke Taguchi ◽  
Shigeyuki Esumi ◽  
Mitsuhiro Miyazaki ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
You Zhai ◽  
Guanzhang Li ◽  
Tao Jiang

Abstract Background Glioma is the most common and fatal type of nerve neoplasm in the central nervous system. Several biomarkers have been considered for prognosis prediction, which is not accurate enough. We aimed to carry out a gene signature related to the expression of immune checkpoints which was enough for its performance in prediction. Methods Gene expression of immune checkpoints in TGGA database was filtrated. The 5 selected genes underwent verification by COX and Lasso-COX regression. Next, the selected genes were included to build a novel signature for further analysis. Results Patients were sub-grouped into high and low risk according to the novel signature. Immune response, clinicopathologic characters, and survival showed significant differences between those 2 groups. Terms including “naive,” “effector,” and “IL-4” were screened out by GSEA. The results showed strong relevance between the signature and immune response. Conclusions We constructed a gene signature with 5 immune checkpoints. The signature predicted survival effectively. The novel signature performed more functional than previous biomarkers.


2016 ◽  
Vol 26 (20) ◽  
pp. R1101-R1108 ◽  
Author(s):  
Irving E. Wang ◽  
Thomas R. Clandinin

Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3200-3210 ◽  
Author(s):  
Han W. Tun ◽  
David Personett ◽  
Karen A. Baskerville ◽  
David M. Menke ◽  
Kurt A. Jaeckle ◽  
...  

Abstract Primary central nervous system (CNS) lymphoma (PCNSL) is a diffuse large B-cell lymphoma (DLBCL) confined to the CNS. A genome-wide gene expression comparison between PCNSL and non-CNS DLBCL was performed, the latter consisting of both nodal and extranodal DLBCL (nDLBCL and enDLBCL), to identify a “CNS signature.” Pathway analysis with the program SigPathway revealed that PCNSL is characterized notably by significant differential expression of multiple extracellular matrix (ECM) and adhesion-related pathways. The most significantly up-regulated gene is the ECM-related osteopontin (SPP1). Expression at the protein level of ECM-related SPP1 and CHI3L1 in PCNSL cells was demonstrated by immunohistochemistry. The alterations in gene expression can be interpreted within several biologic contexts with implications for PCNSL, including CNS tropism (ECM and adhesion-related pathways, SPP1, DDR1), B-cell migration (CXCL13, SPP1), activated B-cell subtype (MUM1), lymphoproliferation (SPP1, TCL1A, CHI3L1), aggressive clinical behavior (SPP1, CHI3L1, MUM1), and aggressive metastatic cancer phenotype (SPP1, CHI3L1). The gene expression signature discovered in our study may represent a true “CNS signature” because we contrasted PCNSL with wide-spectrum non-CNS DLBCL on a genomic scale and performed an in-depth bioinformatic analysis.


Sign in / Sign up

Export Citation Format

Share Document