Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes

2021 ◽  
Author(s):  
Thomas M Haas ◽  
Benoit J Laventie ◽  
Simon Lagies ◽  
Caroline Harter ◽  
Isabel Prucker ◽  
...  

Magic Spot Nucleotides (MSN) regulate the stringent response, a highly conserved bacterial stress adaptation mechanism, enabling survival when confronted with adverse external challenges. In times of antibiotic crisis, a detailed understanding of the stringent response is of critical importance, as potentially new targets for pharmacological intervention could be identified. In this study, we delineate the MSN interactome in Escherichia coli and Salmonella typhimurium cell lysates applying a family of trifunctional photoaffinity capture compounds. We introduce different MSN probes covering diverse phosphorylation patterns, such as pppGpp, ppGpp, and pGpp. Our chemical proteomics approach provides datasets of diverse putative MSN receptors both from cytosolic and membrane fractions that, upon validation, unveil new MSN targets. We find, for example, that the dinucleoside polyphosphate hydrolase activity of the non-Nudix hydrolase ApaH is potently inhibited by pppGpp, which itself is converted to pGpp by ApaH. The photoaffinity capture compounds described herein will be useful to identify MSN interactomes under varying conditions and across bacterial species.

2018 ◽  
Vol 58 (2) ◽  
pp. 537-541 ◽  
Author(s):  
Yunan Li ◽  
Jonathan Evers ◽  
Ang Luo ◽  
Luke Erber ◽  
Zachary Postler ◽  
...  

Author(s):  
Smitha Sivapragasam ◽  
Arpita Ghosh ◽  
Sanjay Kumar ◽  
Danté T Johnson ◽  
Anne Grove

Abstract The stringent response involves accumulation of (p)ppGpp, and it ensures that survival is prioritized. Production of (p)ppGpp requires purine synthesis, and upregulation of an operon that encodes the purine salvage enzyme xanthine dehydrogenase (Xdh) has been observed during stringent response in some bacterial species, where direct binding of ppGpp to a TetR-family transcription factor is responsible for increased xdh gene expression. We show here that the plant pathogen Ralstonia solanacearum has a regulatory system in which the LysR-family transcription factor XanR controls expression of the xan operon; this operon encodes Xdh as well as other enzymes involved in purine salvage, which favor accumulation of xanthine. XanR bound upstream of the xan operon, a binding that was attenuated on addition of either ppGpp or cyclic di-guanosine monophosphate (c-di-GMP). Using a reporter in which enhanced green fluorescent protein (EGFP) is expressed under control of a modified xan promoter, XanR was shown to repress EGFP production. Our data suggest that R. solanacearum features a regulatory mechanism in which expression of genes encoding purine salvage enzymes is controlled by a transcription factor that belongs to a different protein family, yet performs similar regulatory functions.


2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Michael Downey

ABSTRACTDuring stress, bacterial cells activate a conserved pathway called the stringent response that promotes survival. Polyphosphates are long chains of inorganic phosphates that modulate this response in diverse bacterial species. In this issue, Michael J. Gray provides an important correction to the model of how polyphosphate accumulation is regulated during the stringent response inEscherichia coli(M. J. Gray, J. Bacteriol, 201:e00664-18, 2019,https://doi.org/10.1128/JB.00664-18). With other recent publications, this study provides a revised framework for understanding how bacterial polyphosphate dynamics might be exploited in infection control and industrial applications.


2013 ◽  
Vol 12 (6) ◽  
pp. 1644-1660 ◽  
Author(s):  
Lisa M. Wolfe ◽  
Usha Veeraraghavan ◽  
Susan Idicula-Thomas ◽  
Stephan Schürer ◽  
Krister Wennerberg ◽  
...  

2015 ◽  
Vol 197 (19) ◽  
pp. 3028-3040 ◽  
Author(s):  
Birgit M. Prüβ ◽  
Jun Liu ◽  
Penelope I. Higgs ◽  
Lynmarie K. Thompson

In response to rapid changes in their environment, bacteria control a number of processes, including motility, cell division, biofilm formation, and virulence. Research presented in January 2015 at the biennial Bacterial Locomotion and Signal Transduction (BLAST) meeting in Tucson, AZ, illustrates the elegant complexity of the nanoarrays, nanomachines, and networks of interacting proteins that mediate such processes. Studies employing an array of biophysical, genetic, cell biology, and mathematical methods are providing an increasingly detailed understanding of the mechanisms of these systems within well-studied bacteria. Furthermore, comparisons of these processes in diverse bacterial species are providing insight into novel regulatory and functional mechanisms. This review summarizes research presented at the BLAST meeting on these fundamental mechanisms and diverse adaptations, including findings of importance for applications involving bacteria of medical or agricultural relevance.


2014 ◽  
Vol 14 (2) ◽  
pp. 329-339 ◽  
Author(s):  
Zhixiang Wu ◽  
Zhongyi Cheng ◽  
Mingwei Sun ◽  
Xuelian Wan ◽  
Ping Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Carina Danchik ◽  
Siqing Wang ◽  
Petros C. Karakousis

The stringent response is well conserved across bacterial species and is a key pathway involved both in bacterial survival and virulence and in the induction of antibiotic tolerance in Mycobacteria. It is mediated by the alarmone (p)ppGpp and the regulatory molecule inorganic polyphosphate in response to stress conditions such as nutrient starvation. Efforts to pharmacologically target various components of the stringent response have shown promise in modulating mycobacterial virulence and antibiotic tolerance. In this review, we summarize the current understanding of the stringent response and its role in virulence and tolerance in Mycobacteria, including evidence that targeting this pathway could have therapeutic benefit.


Sign in / Sign up

Export Citation Format

Share Document