Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting

2021 ◽  
Author(s):  
Ineke Brouwer ◽  
Emma Kerklingh ◽  
Fred van Leeuwen ◽  
Tineke L Lenstra

Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in budding yeast to measure how transcriptional bursting changes upon single and double perturbations of chromatin remodeling factors, the transcription factor Gal4 and preinitiation complex (PIC) components. Using dynamic epistasis analysis, we reveal how remodeling of different nucleosomes regulates individual transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC acts synergistically with Gal4 binding to facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. In the absence of remodelers, nucleosomes at canonical TATA boxes are displaced by TBP binding to allow for transcription activation. Overall, our results reveal how promoter nucleosome remodeling, together with transcription factor and PIC binding regulates the kinetics of transcriptional bursting.

2001 ◽  
Vol 80 (5) ◽  
pp. 2396-2408 ◽  
Author(s):  
Gregory S. Harms ◽  
Laurent Cognet ◽  
Piet H.M. Lommerse ◽  
Gerhard A. Blab ◽  
Thomas Schmidt

2009 ◽  
Vol 96 (3) ◽  
pp. 677a
Author(s):  
Lauren T. May ◽  
Stephen J. Briddon ◽  
Stephen J. Hill

2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


2018 ◽  
Vol 42 (17) ◽  
pp. 14219-14228 ◽  
Author(s):  
Süreyya Oğuz Tümay ◽  
Aylin Uslu ◽  
Hüsniye Ardıç Alidağı ◽  
Hasan Hüseyin Kazan ◽  
Cansu Bayraktar ◽  
...  

A systematic series of fluorescence chemosensors based on cyclotriphosphazene derivatives were designed, synthesized, and evaluated for their sensing behaviors toward metal ions.


2014 ◽  
Vol 25 (22) ◽  
pp. 3610-3618 ◽  
Author(s):  
Robert Mahen ◽  
Birgit Koch ◽  
Malte Wachsmuth ◽  
Antonio Z. Politi ◽  
Alexis Perez-Gonzalez ◽  
...  

Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.


2018 ◽  
Author(s):  
Benjamin T. Donovan ◽  
Anh Huynh ◽  
David A. Ball ◽  
Michael G. Poirier ◽  
Daniel R. Larson ◽  
...  

SummaryTranscription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the transcription factor Gal4 with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell times sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model where multiple polymerases initiate during a burst as long as the transcription factor is bound to DNA, and a burst terminates upon transcription factor dissociation.


Sign in / Sign up

Export Citation Format

Share Document