scholarly journals Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells

2014 ◽  
Vol 25 (22) ◽  
pp. 3610-3618 ◽  
Author(s):  
Robert Mahen ◽  
Birgit Koch ◽  
Malte Wachsmuth ◽  
Antonio Z. Politi ◽  
Alexis Perez-Gonzalez ◽  
...  

Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.

2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


2017 ◽  
Author(s):  
Noa Aloush ◽  
Tomer Schvartz ◽  
Andres I. König ◽  
Sarit Cohen ◽  
Eugene Brozgol ◽  
...  

ABSTRACTGenetic code expansion enables the incorporation of non-canonical amino acids (ncAAs) into expressed proteins. ncAAs are usually encoded by a stop codon that is decoded by an exogenous orthogonal aminoacyl tRNA synthetase and its cognate suppressor tRNA, such as the pyrrolysine synthetase/ pair. In such systems, stop codon suppression is dependent on the intracellular levels of the exogenous tRNA. Therefore, multiple copies of the tRNAPyl gene (PylT) are encoded to improve ncAA incorporation. However, certain applications in mammalian cells, such as live-cell imaging applications, where labelled tRNA contributes to background fluorescence, can benefit from the use of less invasive minimal expression systems. Accordingly, we studied the effect of tRNAPyl on live-cell fluorescence imaging of bioorthogonally-labelled intracellular proteins. We found that in COS7 cells, a decrease in PylT copy numbers had no measurable effect on protein expression levels. Importantly, reducing PylT copy numbers improved the quality of live-cells images by enhancing the signal-to-noise ratio and reducing an immobile tRNAPyl population. This enabled us to improve live cell imaging of bioorthogonally labelled intracellular proteins, and to simultaneously label two different proteins in a cell. Our results indicate that the number of introduced PylT genes can be minimized according to the transfected cell line, incorporated ncAA, and application.


2017 ◽  
Vol 46 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Harshad Ghodke ◽  
Han Ho ◽  
Antoine M. van Oijen

Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes. In recent years, single-molecule live-cell imaging methods have further enriched our understanding of how repair factors operate in the crowded intracellular environment. The ability to follow individual biochemical events, as they occur in live cells, makes single-molecule techniques tremendously powerful to uncover the spatial organization and temporal regulation of repair factors during DNA–repair reactions. In this review, we will cover practical aspects of single-molecule live-cell imaging and highlight recent advances accomplished by the application of these experimental approaches to the study of DNA–repair processes in prokaryotes.


2001 ◽  
Vol 80 (5) ◽  
pp. 2396-2408 ◽  
Author(s):  
Gregory S. Harms ◽  
Laurent Cognet ◽  
Piet H.M. Lommerse ◽  
Gerhard A. Blab ◽  
Thomas Schmidt

2015 ◽  
Vol 44 (9) ◽  
pp. 4123-4132 ◽  
Author(s):  
Chirantan Kar ◽  
Soham Samanta ◽  
Sudeep Goswami ◽  
Aiyagari Ramesh ◽  
Gopal Das

Selective recognition of Al3+and Cd2+by UV-Vis and fluorescence based techniques using a cinnamaldehyde functionalized conjugated ligand, and its applications in paper strip and live cell imaging.


2009 ◽  
Vol 14 (8) ◽  
pp. 956-969 ◽  
Author(s):  
Christophe Antczak ◽  
Toshimitsu Takagi ◽  
Christina N. Ramirez ◽  
Constantin Radu ◽  
Hakim Djaballah

Caspases are central to the execution of programmed cell death, and their activation constitutes the biochemical hallmark of apoptosis. In this article, the authors report the successful adaptation of a high-content assay method using the DEVDNucView488™ fluorogenic substrate, and for the first time, they show caspase activation in live cells induced by either drugs or siRNA. The fluorogenic substrate was found to be nontoxic over an exposure period of several days, during which the authors demonstrate automated imaging and quantification of caspase activation of the same cell population as a function of time. Overexpression of the antiapoptotic protein Bcl-XL, alone or in combination with the inhibitor Z-VAD-FMK, attenuated caspase activation in HeLa cells exposed to doxorubicin, etoposide, or cell death siRNA. This method was further validated against 2 well-characterized NSCLC cell lines reported to be sensitive (H3255) or refractory (H2030) to erlotinib, where the authors show a differential time-dependent activation was observed for H3255 and no significant changes in H2030, consistent with their respective chemosensitivity profile. In summary, the results demonstrate the feasibility of using this newly adapted and validated high-content assay to screen chemical or RNAi libraries for the identification of previously uncovered enhancers and suppressors of the apoptotic machinery in live cells. ( Journal of Biomolecular Screening 2009:956-969)


2020 ◽  
Author(s):  
Patricia A. Clow ◽  
Nathaniel Jillette ◽  
Jacqueline J. Zhu ◽  
Albert W. Cheng

AbstractThree-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and low signal-to-noise ratios (SNRs), and are thus mostly applicable to repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method, with an enhanced SNR, that allows for one nonrepetitive genomic locus to be labeled using a single sgRNA. We constructed Casilio dual-color probes to visualize the dynamic interactions of cohesin-bound elements in single live cells. By forming a binary sequence of multiple Casilio probes (PISCES) across a continuous stretch of DNA, we track the dynamic 3D folding of a 74kb genomic region over time. This method offers unprecedented resolution and scalability for delineating the dynamic 4D nucleome.One Sentence SummaryCasilio enables multiplexed live cell imaging of nonrepetitive DNA loci for illuminating the real-time dynamics of genome structures.


2021 ◽  
Author(s):  
Ineke Brouwer ◽  
Emma Kerklingh ◽  
Fred van Leeuwen ◽  
Tineke L Lenstra

Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in budding yeast to measure how transcriptional bursting changes upon single and double perturbations of chromatin remodeling factors, the transcription factor Gal4 and preinitiation complex (PIC) components. Using dynamic epistasis analysis, we reveal how remodeling of different nucleosomes regulates individual transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC acts synergistically with Gal4 binding to facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. In the absence of remodelers, nucleosomes at canonical TATA boxes are displaced by TBP binding to allow for transcription activation. Overall, our results reveal how promoter nucleosome remodeling, together with transcription factor and PIC binding regulates the kinetics of transcriptional bursting.


2019 ◽  
Vol 294 (28) ◽  
pp. 10877-10885 ◽  
Author(s):  
Da-Wei Lin ◽  
Benjamin P. Chung ◽  
Jia-Wei Huang ◽  
Xiaorong Wang ◽  
Lan Huang ◽  
...  

Work in yeast models has benefitted tremendously from the insertion of epitope or fluorescence tags at the native gene locus to study protein function and behavior under physiological conditions. In contrast, work in mammalian cells largely relies on overexpression of tagged proteins because high-quality antibodies are only available for a fraction of the mammalian proteome. CRISPR/Cas9-mediated genome editing has recently emerged as a powerful genome-modifying tool that can also be exploited to insert various tags and fluorophores at gene loci to study the physiological behavior of proteins in most organisms, including mammals. Here we describe a versatile toolset for rapid tagging of endogenous proteins. The strategy utilizes CRISPR/Cas9 and microhomology-mediated end joining repair for efficient tagging. We provide tools to insert 3×HA, His6FLAG, His6-Biotin-TEV-RGSHis6, mCherry, GFP, and the auxin-inducible degron tag for compound-induced protein depletion. This approach and the developed tools should greatly facilitate functional analysis of proteins in their native environment.


Sign in / Sign up

Export Citation Format

Share Document