scholarly journals The phospho-docking protein 14-3-3 regulates microtubule-associated proteins in oocytes including the chromosomal passenger Borealin

2021 ◽  
Author(s):  
Charlotte Repton ◽  
C Fiona Cullen ◽  
Mariana FA Costa ◽  
Christos Spanos ◽  
Juri Rappsilber ◽  
...  

Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to binding microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function. The mass spectrometry data are available from ProteomeXchange, identifier ID to be provided when available, PXD000xxx.

Author(s):  
Nobutaka Hirokawa

In this symposium I will present our studies about the molecular architecture and function of the cytomatrix of the nerve cells. The nerve cell is a highly polarized cell composed of highly branched dendrites, cell body, and a single long axon along the direction of the impulse propagation. Each part of the neuron takes characteristic shapes for which the cytoskeleton provides the framework. The neuronal cytoskeletons play important roles on neuronal morphogenesis, organelle transport and the synaptic transmission. In the axon neurofilaments (NF) form dense arrays, while microtubules (MT) are arranged as small clusters among the NFs. On the other hand, MTs are distributed uniformly, whereas NFs tend to run solitarily or form small fascicles in the dendrites Quick freeze deep etch electron microscopy revealed various kinds of strands among MTs, NFs and membranous organelles (MO). These structures form major elements of the cytomatrix in the neuron. To investigate molecular nature and function of these filaments first we studied molecular structures of microtubule associated proteins (MAP1A, MAP1B, MAP2, MAP2C and tau), and microtubules reconstituted from MAPs and tubulin in vitro. These MAPs were all fibrous molecules with different length and formed arm like projections from the microtubule surface.


2018 ◽  
Vol 46 (5) ◽  
pp. 1381-1392 ◽  
Author(s):  
Ivar W. Dilweg ◽  
Remus T. Dame

Post-translational modification (PTM) of histones has been investigated in eukaryotes for years, revealing its widespread occurrence and functional importance. Many PTMs affect chromatin folding and gene activity. Only recently the occurrence of such modifications has been recognized in bacteria. However, it is unclear whether PTM of the bacterial counterparts of eukaryotic histones, nucleoid-associated proteins (NAPs), bears a comparable significance. Here, we scrutinize proteome mass spectrometry data for PTMs of the four most abundantly present NAPs in Escherichia coli (H-NS, HU, IHF and FIS). This approach allowed us to identify a total of 101 unique PTMs in the 11 independent proteomic studies covered in this review. Combined with structural and genetic information on these proteins, we describe potential effects of these modifications (perturbed DNA-binding, structural integrity or interaction with other proteins) on their function.


2016 ◽  
Vol 213 (4) ◽  
pp. 425-433 ◽  
Author(s):  
Melissa C. Pamula ◽  
Shih-Chieh Ti ◽  
Tarun M. Kapoor

Diversity in cytoskeleton organization and function may be achieved through variations in primary sequence of tubulin isotypes. Recently, isotype functional diversity has been linked to a “tubulin code” in which the C-terminal tail, a region of substantial sequence divergence between isotypes, specifies interactions with microtubule-associated proteins. However, it is not known whether residue changes in this region alter microtubule dynamic instability. Here, we examine recombinant tubulin with human β isotype IIB and characterize polymerization dynamics. Microtubules with βIIB have catastrophe frequencies approximately threefold lower than those with isotype βIII, a suppression similar to that achieved by regulatory proteins. Further, we generate chimeric β tubulins with native tail sequences swapped between isotypes. These chimeras have catastrophe frequencies similar to that of the corresponding full-length construct with the same core sequence. Together, our data indicate that residue changes within the conserved β tubulin core are largely responsible for the observed isotype-specific changes in dynamic instability parameters and tune tubulin’s polymerization properties across a wide range.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009104
Author(s):  
Ines Leca ◽  
Alexander William Phillips ◽  
Iris Hofer ◽  
Lukas Landler ◽  
Lyubov Ushakova ◽  
...  

Microtubules play a critical role in multiple aspects of neurodevelopment, including the generation, migration and differentiation of neurons. A recurrent mutation (R402H) in the α-tubulin gene TUBA1A is known to cause lissencephaly with cerebellar and striatal phenotypes. Previous work has shown that this mutation does not perturb the chaperone-mediated folding of tubulin heterodimers, which are able to assemble and incorporate into the microtubule lattice. To explore the molecular mechanisms that cause the disease state we generated a new conditional mouse line that recapitulates the R402H variant. We show that heterozygous mutants present with laminar phenotypes in the cortex and hippocampus, as well as a reduction in striatal size and cerebellar abnormalities. We demonstrate that homozygous expression of the R402H allele causes neuronal death and exacerbates a cell intrinsic defect in cortical neuronal migration. Microtubule sedimentation assays coupled with quantitative mass spectrometry demonstrated that the binding and/or levels of multiple microtubule associated proteins (MAPs) are perturbed by the R402H mutation including VAPB, REEP1, EZRIN, PRNP and DYNC1l1/2. Consistent with these data we show that the R402H mutation impairs dynein-mediated transport which is associated with a decoupling of the nucleus to the microtubule organising center. Our data support a model whereby the R402H variant is able to fold and incorporate into microtubules, but acts as a gain of function by perturbing the binding of MAPs.


1997 ◽  
Vol 138 (5) ◽  
pp. 1067-1075 ◽  
Author(s):  
Harald Felgner ◽  
Rainer Frank ◽  
Jacek Biernat ◽  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
...  

Microtubules are flexible polymers whose mechanical properties are an important factor in the determination of cell architecture and function. It has been proposed that the two most prominent neuronal microtubule-associated proteins (MAPs), tau and MAP2, whose microtubule binding regions are largely homologous, make an important contribution to the formation and maintenance of neuronal processes, putatively by increasing the rigidity of microtubules. Using optical tweezers to manipulate single microtubules, we have measured their flexural rigidity in the presence of various constructs of tau and MAP2c. The results show a three- or fourfold increase of microtubule rigidity in the presence of wild-type tau or MAP2c, respectively. Unexpectedly, even low concentrations of MAPs promote a substantial increase in microtubule rigidity. Thus at ∼20% saturation with full-length tau, a microtubule exhibits >80% of the rigidity observed at near saturating concentrations. Several different constructs of tau or MAP2 were used to determine the relative contribution of certain subdomains in the microtubule-binding region. All constructs tested increase microtubule rigidity, albeit to different extents. Thus, the repeat domains alone increase microtubule rigidity only marginally, whereas the domains flanking the repeats make a significant contribution. Overall, there is an excellent correlation between the strength of binding of a MAP construct to microtubules (as represented by its dissociation constant Kd) and the increase in microtubule rigidity. These findings demonstrate that neuronal MAPs as well as constructs derived from them increase microtubule rigidity, and that the changes in rigidity observed with different constructs correlate well with other biochemical and physiological parameters.


1990 ◽  
Vol 97 (4) ◽  
pp. 705-713
Author(s):  
R. Balczon ◽  
M.A. Accavitti ◽  
B.R. Brinkley

Monoclonal antibodies were raised against a complex of proteins that was purified following the crosslinking of tubulin to the centromeres of CHO chromosomes using Lomant's reagent. One of the clones, hybridoma 32–9, produced antibodies that reacted with a 40 × 10(3) Mr protein present in the crosslinked complex. Furthermore, immunoblot analysis demonstrated that the 40 × 10(3) Mr antigen was present in various mammalian cell types from several different species. Indirect immunofluorescence using the antibody produced by clone 32–9 demonstrated that the 40 × 10(3) Mr antigen was associated with both spindle and cytoplasmic microtubules. In addition, centromere/kinetochore staining was detected in metaphase-arrested cells, while staining of prekinetochores in interphase nuclei was not observed. Unlike microtubule-associated proteins and microtubule-dependent ATPases, the 40 × 10(3) Mr protein did not copurify with microtubules when tubules were assembled from cellular homogenates using taxol and either GTP or GTP and AMP-PNP. Instead, the 40 × 10(3) Mr protein remained associated with the insoluble cellular material. The 40 × 10(3) Mr antigen could be released from the insoluble pelleted material by extraction with 1 M NaCl. Once solubilized, the 40 × 10(3) Mr protein was able to copurify with microtubules in assembly assays in vitro. This monoclonal antibody should serve as a valuable probe for studies of centromere/kinetochore structure and function.


Sign in / Sign up

Export Citation Format

Share Document