scholarly journals Haplotype-resolved inversion landscape reveals hotspots of mutational recurrence associated with genomic disorders

2021 ◽  
Author(s):  
David Porubsky ◽  
Wolfram Höps ◽  
Hufsah Ashraf ◽  
PingHsun Hsieh ◽  
Bernardo Rodriguez-Martin ◽  
...  

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1-retrotransposition; 80% of the larger inversions are balanced and affect twice as many base pairs as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or mobile elements. Since this suggests recurrence due to non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7*10-4 per locus and generation. Recurrent inversions exhibit a sex-chromosomal bias, and significantly co-localize to the critical regions of genomic disorders. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes to disease-causing CNVs.

ESC CardioMed ◽  
2018 ◽  
pp. 669-671
Author(s):  
Eric Schulze-Bahr

The human genome consists of approximately 3 billion (3 × 109) base pairs of DNA (around 20,000 genes), organized as 23 chromosomes (diploid parental set), and a small mitochondrial genome (37 genes, including 13 proteins; 16,589 base pairs) of maternal origin. Most human genetic variation is natural, that is, common or rare (minor allele frequency >0.1%) and does not cause disease—apart from every true disease-causing (bona fide) mutation each individual genome harbours more than 3.5 million single nucleotide variants (including >10,000 non-synonymous changes causing amino acid substitutions) and 200–300 large structural or copy number variants (insertions/deletions, up to several thousands of base-pairs) that are non-disease-causing variations and scattered throughout coding and non-coding genomic regions.


Author(s):  
Alexander Charney ◽  
Pamela Sklar

Schizophrenia and bipolar disorder are the classic psychotic disorders. Both diseases are strongly familial, but have proven recalcitrant to genetic methodologies for identifying the etiology until recently. There is now convincing genetic evidence that indicates a contribution of many DNA changes to the risk of becoming ill. For schizophrenia, there are large contributions of rare copy number variants and common single nucleotide variants, with an overall highly polygenic genetic architecture. For bipolar disorder, the role of copy number variation appears to be much less pronounced. Specific common single nucleotide polymorphisms are associated, and there is evidence for polygenicity. Several surprises have emerged from the genetic data that indicate there is significantly more molecular overlap in copy number variants between autism and schizophrenia, and in common variants between schizophrenia and bipolar disorder.


2020 ◽  
Vol 103 (3) ◽  
pp. 1073-1088
Author(s):  
Gianluca Bretani ◽  
Laura Rossini ◽  
Chiara Ferrandi ◽  
Joanne Russell ◽  
Robbie Waugh ◽  
...  

2012 ◽  
Vol 367 (14) ◽  
pp. 1321-1331 ◽  
Author(s):  
Santhosh Girirajan ◽  
Jill A. Rosenfeld ◽  
Bradley P. Coe ◽  
Sumit Parikh ◽  
Neil Friedman ◽  
...  

2006 ◽  
Vol 38 (10) ◽  
pp. 1216-1220 ◽  
Author(s):  
Adnan Derti ◽  
Frederick P Roth ◽  
George M Church ◽  
C-ting Wu

Author(s):  
Marie Coutelier ◽  
Manuel Holtgrewe ◽  
Marten Jäger ◽  
Ricarda Flöttman ◽  
Martin A. Mensah ◽  
...  

AbstractCopy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative to the combination of aCGH and whole-exome sequencing.


2008 ◽  
Vol 18 (12) ◽  
pp. 1865-1874 ◽  
Author(s):  
P. M. Kim ◽  
H. Y.K. Lam ◽  
A. E. Urban ◽  
J. O. Korbel ◽  
J. Affourtit ◽  
...  

2009 ◽  
Vol 4 (2) ◽  
pp. 71-72
Author(s):  
Thomas J. Nicholas ◽  
Ze Cheng ◽  
Katrina L. Mealey ◽  
Evan E. Eichler ◽  
Joshua M. Akey

Sign in / Sign up

Export Citation Format

Share Document