scholarly journals Neural stemness unifies cell tumorigenicity and pluripotent differentiation potential

2021 ◽  
Author(s):  
Min Zhang ◽  
Yang Liu ◽  
Lihua Shi ◽  
Lei Fang ◽  
Liyang Xu ◽  
...  

Tumorigenicity and pluripotent differentiation potential are kernel cell properties for tumorgenesis and embryogenesis. A growing number of studies have demonstrated that neural stemness is the source of the two cell properties, because neural stem cells and cancer cells share cell features and regulatory networks and neural stemness has an evolutionary advantage. However, it needs to validate whether neural stemness is a cell property that would unify tumorigenicity and pluripotent differentiation potential. SETDB1/Setdb1 is an epigenetic factor that is upregulated in cancer cells and promotes cancers, and correspondingly, is enriched in embryonic neural cells during vertebrate embryogenesis. We show that knockdown of SETDB1/Setdb1 led to neuronal differentiation in neural stem and cancer cells, concomitant with reduced tumorigenicity and pluripotent differentiation potential in these cells; whereas overexpression caused an opposite effect. On one hand, SETDB1 maintains a regulatory network comprised of proteins involved in developmental programs and basic cellular functional machineries, including epigenetic modifications (EZH2), ribosome biogenesis (RPS3), translation initiation (EIF4G), spliceosome assembly (SF3B1), etc., all of which play active roles in cancers. On the other, it represses transcription of genes promoting differentiation and cell cycle and growth arrest. Moreover, neural stemness, tumorigenicity and pluripotent differentiation potential were simultaneously enhanced during serial transplantation of cancer cells. Expression of proteins involved in developmental programs and basic cellular functional machineries, including SETDB1 and other proteins above, was gradually increased. In agreement with increased expression of spliceosome proteins, alternative splicing events also increased in tumor cells derived from later transplantations, suggesting that different machineries should work concertedly to match the status of high proliferation and pluripotent differentiation potential. The study presents the evidence that neural stemness unifies tumorigenicity and differentiation potential. Tumorigenesis represents a process of gradual loss of original cell identity and gain of neural stemness in somatic cells, which might be a distorted replay of neural induction during normal embryogenesis.

2019 ◽  
Author(s):  
Eriko Shimada ◽  
Yusuke Tsuruwaka

Various cancer cells are known to show neural differentiation. Adrenocortical carcinoma (ACC) is a rare and frequently aggressive tumor originating in the cortex of the adrenal gland. Early diagnosis of ACC is challenging due to a lot of unknown aspects such as cell characteristics in a rare cancer. In the present study, morphological features were examined in the adrenal cortex carcinoma cells SW-13 as an initial candidate, which were exposed to neural differentiation condition. SW-13 cells treated with the neural induction supplement showed neural-like differentiation with elongated filaments. It was suggested that SW-13 cells had neural differentiation potential and could be a research tool to elucidate the cell characteristics in future ACC studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liyang Xu ◽  
Min Zhang ◽  
Lihua Shi ◽  
Xiaoli Yang ◽  
Lu Chen ◽  
...  

Abstract Background Previous studies demonstrated the dependence of cancer on nerve. Recently, a growing number of studies reveal that cancer cells share the property and regulatory network with neural stem/progenitor cells. However, relationship between the property of neural stemness and cell tumorigenicity is unknown. Results We show that neural stem/progenitor cells, but not non-neural embryonic or somatic stem/progenitor cell types, exhibit tumorigenicity and the potential for differentiation into tissue types of all germ layers when they are placed in non-native environment by transplantation into immunodeficient nude mice. Likewise, cancer cells capable of tumor initiation have the property of neural stemness because of their abilities in neurosphere formation in neural stem cell-specific serum-free medium and in differentiation potential, in addition to their neuronal differentiation potential that was characterized previously. Moreover, loss of a pro-differentiation factor in myoblasts, which have no tumorigenicity, lead to the loss of myoblast identity, and gain of the property of neural stemness, tumorigenicity and potential for re-differentiation. By contrast, loss of neural stemness via differentiation results in the loss of tumorigenicity. These suggest that the property of neural stemness contributes to cell tumorigenicity, and tumor phenotypic heterogeneity might be an effect of differentiation potential of neural stemness. Bioinformatic analysis reveals that neural genes in general are correlated with embryonic development and cancer, in addition to their role in neural development; whereas non-neural genes are not. Most of neural specific genes emerged in typical species representing transition from unicellularity to multicellularity during evolution. Genes in Monosiga brevicollis, a unicellular species that is a closest known relative of metazoans, are biased toward neural cells. Conclusions We suggest that the property of neural stemness is the source of cell tumorigenicity. This is due to that neural biased unicellular state is the ground state for multicellularity and hence cell type diversification or differentiation during evolution, and tumorigenesis is a process of restoration of neural ground state in somatic cells along a default route that is pre-determined by an evolutionary advantage of neural state.


2020 ◽  
Author(s):  
Liyang Xu ◽  
Min Zhang ◽  
Lihua Shi ◽  
Xiaoli Yang ◽  
Lu Chen ◽  
...  

Abstract Background: Previous studies demonstrated the dependence of cancer on nerve. Recently, a growing number of studies reveal that cancer cells share the property and regulatory network with neural stem/progenitor cells. However, relationship between the property of neural stemness and cell tumorigenicity is unknown.Results: We show that neural stem/progenitor cells, but not non-neural embryonic or somatic stem/progenitor cell types, exhibit tumorigenicity and the potential for differentiation into tissue types of all germ layers when they are placed in non-native environment by transplantation into immunodeficient nude mice. Likewise, cancer cells capable of tumor initiation have the property of neural stemness because of their abilities in neurosphere formation in neural stem cell-specific serum-free medium and in differentiation potential, in addition to their neuronal differentiation potential that was characterized previously. Moreover, loss of a pro-differentiation factor in myoblasts, which have no tumorigenicity, lead to the loss of myoblast identity, and gain of the property of neural stemness, tumorigenicity and potential for re-differentiation. By contrast, loss of neural stemness via differentiation results in the loss of tumorigenicity. These suggest that the property of neural stemness contributes to cell tumorigenicity, and tumor phenotypic heterogeneity might be an effect of differentiation potential of neural stemness. Bioinformatic analysis reveals that neural genes in general are correlated with embryonic development and cancer, in addition to their role in neural development; whereas non-neural genes are not. Most of neural specific genes emerged in typical species representing transition from unicellularity to multicellularity during evolution. Genes in Monosiga brevicollis, a unicellular species that is a closest known relative of metazoans, are biased toward neural cells.Conclusions: We suggest that the property of neural stemness is the source of cell tumorigenicity. This is due to that neural biased unicellular state is the ground state for multicellularity and hence cell type diversification or differentiation during evolution, and tumorigenesis is a process of restoration of neural ground state in somatic cells along a default route that is pre-determined by an evolutionary advantage of neural state.


2017 ◽  
Vol 292 (31) ◽  
pp. 12842-12859 ◽  
Author(s):  
Zan Zhang ◽  
Anhua Lei ◽  
Liyang Xu ◽  
Lu Chen ◽  
Yonglong Chen ◽  
...  

2020 ◽  
Author(s):  
Liyang Xu ◽  
Min Zhang ◽  
Lihua Shi ◽  
Xiaoli Yang ◽  
Lu Chen ◽  
...  

Abstract Background Previous studies demonstrated the dependence of cancer on nerve. Recently, a growing number of studies reveal that cancer cells share the property and regulatory network with neural stem/progenitor cells. However, relationship between the property of neural stemness and cell tumorigenicity is unknown. Results We show that neural stem/progenitor cells, but not non-neural embryonic or somatic stem/progenitor cell types, exhibit tumorigenicity and the potential for differentiation into tissue types of all germ layers when they are placed in non-native environment by transplantation into immunodeficient nude mice. Likewise, cancer cells capable of tumor initiation have the property of neural stemness because of their abilities in neurosphere formation in neural stem cell-specific serum-free medium and in differentiation potential, in addition to their neuronal differentiation potential that was characterized previously. Moreover, loss of a pro-differentiation factor in myoblasts, which have no tumorigenicity, lead to the loss of myoblast identity, and gain of the property of neural stemness, tumorigenicity and potential for re-differentiation. These suggest that the property of neural stemness contributes to cell tumorigenicity, and tumor phenotypic heterogeneity might be an effect of differentiation potential of neural stemness. Bioinformatic analysis reveals that neural genes in general are correlated with embryonic development and cancer, in addition to their role in neural development; whereas non-neural genes are not. Most of neural specific genes emerged in typical species representing transition from unicellularity to multicellularity during evolution. Genes in Monosiga brevicollis, a unicellular species that is a closest known relative of metazoans, are biased toward neural cells. Conclusions We suggest that the property of neural stemness is the source of cell tumorigenicity. This is due to that neural biased unicellular state is the ground state for multicellularity and hence cell type diversification or differentiation during evolution, and tumorigenesis is a process of restoration of neural ground state in somatic cells along a default route that is pre-determined by an evolutionary advantage of neural state.


2019 ◽  
Author(s):  
Eriko Shimada ◽  
Yusuke Tsuruwaka

Various cancer cells are known to show neural differentiation. Adrenocortical carcinoma (ACC) is a rare and frequently aggressive tumor originating in the cortex of the adrenal gland. Early diagnosis of ACC is challenging due to a lot of unknown aspects such as cell characteristics in a rare cancer. In the present study, morphological features were examined in the adrenal cortex carcinoma cells SW-13 as an initial candidate, which were exposed to neural differentiation condition. SW-13 cells treated with the neural induction supplement showed neural-like differentiation with elongated filaments. It was suggested that SW-13 cells had neural differentiation potential and could be a research tool to elucidate the cell characteristics in future ACC studies.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1098 ◽  
Author(s):  
Gaviraghi ◽  
Vivori ◽  
Tonon

The generation of new ribosomes is a coordinated process essential to sustain cell growth. As such, it is tightly regulated according to cell needs. As cancer cells require intense protein translation to ensure their enhanced growth rate, they exploit various mechanisms to boost ribosome biogenesis. In this review, we will summarize how oncogenes and tumor suppressors modulate the biosynthesis of the RNA component of ribosomes, starting from the description of well-characterized pathways that converge on ribosomal RNA transcription while including novel insights that reveal unexpected regulatory networks hacked by cancer cells to unleash ribosome production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii225-ii226
Author(s):  
Vahan Martirosian ◽  
Krutika Deshpande ◽  
Hao Zhou ◽  
Keyue Shen ◽  
Vazgen Stepanosyan ◽  
...  

Abstract Medulloblastoma (MB) is a malignant pediatric brain tumor. Studies have shown heterogeneous cells amongst the tumor bulk which mirror normal neural cells in various neurodevelopmental stages. To discern exploited mechanisms promoting MB leptomeningeal disease, we drew conclusions from developmental neurobiology. In normal differentiation, the metabolic phenotype in proliferating neural progenitor cells evolves from a glycolysis-dependent to an oxidative phosphorylation-reliant energetic profile in quiescent differentiated neurons. Cancer cells mirror this evolution, which also grants them the capability to utilize alternative nutrients in the microenvironment as an energy source. Considering metastatic cells are typically in a dormant state and primarily utilize oxidative phosphorylation, we hypothesized metastatic MB cells emulate a quiescent neuron-like cellular profile to survive in the cerebrospinal fluid and form leptomeningeal metastases. To examine this, we query the expression of GABA catabolic enzyme GABA transaminase (ABAT) in MB. GABA is found in the cerebellar and leptomeningeal microenvironments, and is utilized by metastatic cancer cells in the CNS as an energy source. We correlate an increase in ABAT expression with neurodevelopment and show heterogeneous expression of this protein in primary MB tumors. MB cells with increased expression of ABAT were slower-dividing, expressed a genetic and metabolic phenotype reminiscent of quiescent neuron-like cells, and had increased capability to metabolize GABA. Conversely, lower expression of ABAT was associated with an increased proliferation rate and correlated with a progenitor-like cellular profile. Transplantation of MB cells into the leptomeningeal compartment decreased proliferative capacity and enhanced ABAT expression. Xenograft models showed MB cells with ABAT knockdown had increased growth in the cerebellar microenvironment. Conversely, MB cells with ABAT overexpression transplanted into the cerebrospinal fluid formed leptomeningeal metastases whereas ABAT knockdown cells could not. These results suggest ABAT expression in MB cells can be modulated by the tumor microenvironment and is required to form leptomeningeal metastases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dilara Uzuner ◽  
Yunus Akkoç ◽  
Nesibe Peker ◽  
Pınar Pir ◽  
Devrim Gözüaçık ◽  
...  

AbstractPrimary cancer cells exert unique capacity to disseminate and nestle in distant organs. Once seeded in secondary sites, cancer cells may enter a dormant state, becoming resistant to current treatment approaches, and they remain silent until they reactivate and cause overt metastases. To illuminate the complex mechanisms of cancer dormancy, 10 transcriptomic datasets from the literature enabling 21 dormancy–cancer comparisons were mapped on protein–protein interaction networks and gene-regulatory networks to extract subnetworks that are enriched in significantly deregulated genes. The genes appearing in the subnetworks and significantly upregulated in dormancy with respect to proliferative state were scored and filtered across all comparisons, leading to a dormancy–interaction network for the first time in the literature, which includes 139 genes and 1974 interactions. The dormancy interaction network will contribute to the elucidation of cellular mechanisms orchestrating cancer dormancy, paving the way for improvements in the diagnosis and treatment of metastatic cancer.


Sign in / Sign up

Export Citation Format

Share Document