scholarly journals Mechanical gating of the auditory transduction channel TMC1 involves the fourth and sixth transmembrane helices

2022 ◽  
Author(s):  
Nurunisa Akyuz ◽  
K. Domenica Karavitaki ◽  
Bifeng Pan ◽  
Panos I. Tamvakologos ◽  
Kelly P. Brock ◽  
...  

The transmembrane channel-like (TMC) 1 and 2 proteins play a central role in auditory transduction, forming ion channels that convert sound into electrical signals. However, the molecular mechanism of their gating remains unknown. Here, using predicted structural models as a guide, we probed the effects of twelve mutations on the mechanical gating of the transduction currents in native hair cells of Tmc1/2-null mice expressing virally introduced TMC1 variants. Whole-cell electrophysiological recordings revealed that mutations within the pore-lining transmembrane (TM) helices 4 and 6 modified gating, reducing the force sensitivity or shifting the open probability of the channels, or both. For some of the mutants, these changes were accompanied by a change in single-channel conductance. Our observations are in line with a model wherein conformational changes in the TM4 and TM6 helices are involved in the mechanical gating of the transduction channel.

1994 ◽  
Vol 103 (2) ◽  
pp. 279-319 ◽  
Author(s):  
W N Zagotta ◽  
T Hoshi ◽  
J Dittman ◽  
R W Aldrich

Voltage-dependent gating behavior of Shaker potassium channels without N-type inactivation (ShB delta 6-46) expressed in Xenopus oocytes was studied. The voltage dependence of the steady-state open probability indicated that the activation process involves the movement of the equivalent of 12-16 electronic charges across the membrane. The sigmoidal kinetics of the activation process, which is maintained at depolarized voltages up to at least +100 mV indicate the presence of at least five sequential conformational changes before opening. The voltage dependence of the gating charge movement suggested that each elementary transition involves 3.5 electronic charges. The voltage dependence of the forward opening rate, as estimated by the single-channel first latency distribution, the final phase of the macroscopic ionic current activation, the ionic current reactivation and the ON gating current time course, showed movement of the equivalent of 0.3 to 0.5 electronic charges were associated with a large number of the activation transitions. The equivalent charge movement of 1.1 electronic charges was associated with the closing conformational change. The results were generally consistent with models involving a number of independent and identical transitions with a major exception that the first closing transition is slower than expected as indicated by tail current and OFF gating charge measurements.


2005 ◽  
Vol 280 (43) ◽  
pp. 35836-35843 ◽  
Author(s):  
Rebecca Hawthorne ◽  
Joseph W. Lynch

The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg271– Lys276) toward the N-terminal end of the homomeric α1 GlyR M2–M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound (MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr6′ residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2–M3 loop are mediated allosterically. This suggests that the M2–M3 loop responds differently to the occupation of different binding sites.


2008 ◽  
Vol 131 (2) ◽  
pp. 163-181 ◽  
Author(s):  
Angelo Keramidas ◽  
Neil L. Harrison

The family of γ-aminobutyric acid type A receptors (GABAARs) mediates two types of inhibition in the mammalian brain. Phasic inhibition is mediated by synaptic GABAARs that are mainly comprised of α1, β2, and γ2 subunits, whereas tonic inhibition is mediated by extrasynaptic GABAARs comprised of α4/6, β2, and δ subunits. We investigated the activation properties of recombinant α4β2δ and α1β2γ2S GABAARs in response to GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one (THIP) using electrophysiological recordings from outside-out membrane patches. Rapid agonist application experiments indicated that THIP produced faster opening rates at α4β2δ GABAARs (β ∼1600 s−1) than at α1β2γ2S GABAARs (β ∼ 460 s−1), whereas GABA activated α1β2γ2S GABAARs more rapidly (β ∼1800 s−1) than α4β2δ GABAARs (β < 440 s−1). Single channel recordings of α1β2γ2S and α4β2δ GABAARs showed that both channels open to a main conductance state of ∼25 pS at −70 mV when activated by GABA and low concentrations of THIP, whereas saturating concentrations of THIP elicited ∼36 pS openings at both channels. Saturating concentrations of GABA elicited brief (<10 ms) openings with low intraburst open probability (PO ∼ 0.3) at α4β2δ GABAARs and at least two “modes” of single channel bursting activity, lasting ∼100 ms at α1β2γ2S GABAARs. The most prevalent bursting mode had a PO of ∼0.7 and was described by a reaction scheme with three open and three shut states, whereas the “high” PO mode (∼0.9) was characterized by two shut and three open states. Single channel activity elicited by THIP in α4β2δ and α1β2γ2S GABAARs occurred as a single population of bursts (PO ∼0.4–0.5) of moderate duration (∼33 ms) that could be described by schemes containing two shut and two open states for both GABAARs. Our data identify kinetic properties that are receptor-subtype specific and others that are agonist specific, including unitary conductance.


2009 ◽  
Vol 297 (1) ◽  
pp. C75-C85 ◽  
Author(s):  
Mingjie Tong ◽  
R. Keith Duncan

Large-conductance, Ca2+-activated, and voltage-gated potassium channels (BK, BKCa, or Maxi-K) play an important role in electrical tuning in nonmammalian vertebrate hair cells. Systematic changes in tuning frequency along the tonotopic axis largely result from variations in BK channel kinetics, but the molecular changes underpinning these functional variations remain unknown. Auxiliary β1 have been implicated in low-frequency tuning at the cochlear apex because these subunits dramatically slow channel kinetics. Tamoxifen (Tx), a (xeno)estrogen compound known to activate BK channels through the β-subunit, was used to test for the functional presence of β1. The hypotheses were that Tx would activate the majority of BK channels in hair cells from the cochlear apex due to the presence of β1 and that the level of activation would exhibit a tonotopic gradient following the expression profile of β1. Outside-out patches of BK channels were excised from tall hair cells along the apical half of the chicken basilar papilla. In low-density patches, single-channel conductance was reduced and the averaged open probability was unaffected by Tx. In high-density patches, the amplitude of ensemble-averaged BK current was inhibited, whereas half-activation potential and activation kinetics were unaffected by Tx. In both cases, no tonotopic Tx-dependent activation of channel activity was observed. Therefore, contrary to the hypotheses, electrophysiological assessment suggests that molecular mechanisms other than auxiliary β-subunits are involved in generating a tonotopic distribution of BK channel kinetics and electric tuning in chick basilar papilla.


2020 ◽  
Vol 152 (4) ◽  
Author(s):  
Miranda J. McDaniel ◽  
Kevin K. Ogden ◽  
Steven A. Kell ◽  
Pieter B. Burger ◽  
Dennis C. Liotta ◽  
...  

The NMDA receptor (NMDAR) is an ionotropic glutamate receptor formed from the tetrameric assembly of GluN1 and GluN2 subunits. Within the flexible linker between the agonist binding domain (ABD) and the M1 helix of the pore-forming transmembrane helical bundle lies a two-turn, extracellular pre-M1 helix positioned parallel to the plasma membrane and in van der Waals contact with the M3 helix thought to constitute the channel gate. The pre-M1 helix is tethered to the bilobed ABD, where agonist-induced conformational changes initiate activation. Additionally, it is a locus for de novo mutations associated with neurological disorders, is near other disease-associated de novo sites within the transmembrane domain, and is a structural determinant of subunit-selective modulators. To investigate the role of the pre-M1 helix in channel gating, we performed scanning mutagenesis across the GluN2A pre-M1 helix and recorded whole-cell macroscopic and single channel currents from HEK293 cell-attached patches. We identified two residues at which mutations perturb channel open probability, the mean open time, and the glutamate deactivation time course. We identified a subunit-specific network of aromatic amino acids located in and around the GluN2A pre-M1 helix to be important for gating. Based on these results, we are able to hypothesize about the role of the pre-M1 helix in other NMDAR subunits based on sequence and structure homology. Our results emphasize the role of the pre-M1 helix in channel gating, implicate the surrounding amino acid environment in this mechanism, and suggest unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating.


2010 ◽  
Vol 103 (5) ◽  
pp. 2494-2505 ◽  
Author(s):  
Ping Lv ◽  
Adrian Rodriguez-Contreras ◽  
Hyo Jeong Kim ◽  
Jun Zhu ◽  
Dongguang Wei ◽  
...  

The enzyme nitric oxide (NO) synthase, that produces the signaling molecule NO, has been identified in several cell types in the inner ear. However, it is unclear whether a measurable quantity of NO is released in the inner ear to confer specific functions. Indeed, the functional significance of NO and the elementary cellular mechanism thereof are most uncertain. Here, we demonstrate that the sensory epithelia of the frog saccule release NO and explore its release mechanisms by using self-referencing NO-selective electrodes. Additionally, we investigated the functional effects of NO on electrical properties of hair cells and determined their underlying cellular mechanism. We show detectable amounts of NO are released by hair cells (>50 nM). Furthermore, a hair-cell efferent modulator acetylcholine produces at least a threefold increase in NO release. NO not only attenuated the baseline membrane oscillations but it also increased the magnitude of current required to generate the characteristic membrane potential oscillations. This resulted in a rightward shift in the frequency–current relationship and altered the excitability of hair cells. Our data suggest that these effects ensue because NO reduces whole cell Ca2+ current and drastically decreases the open probability of single-channel events of the L-type and non L-type Ca2+ channels in hair cells, an effect that is mediated through direct nitrosylation of the channel and activation of protein kinase G. Finally, NO increases the magnitude of Ca2+-activated K+ currents via direct NO nitrosylation. We conclude that NO-mediated inhibition serves as a component of efferent nerve modulation of hair cells.


2020 ◽  
pp. jbc.RA119.012358 ◽  
Author(s):  
Josip Ivica ◽  
Remigijus Lape ◽  
Vid Jazbec ◽  
Jie Yu ◽  
Hongtao Zhu ◽  
...  

Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, β-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for ICD in pentameric ligand-gated channels.


2001 ◽  
Vol 118 (5) ◽  
pp. 547-564 ◽  
Author(s):  
Jie Zheng ◽  
Lalitha Vankataramanan ◽  
Fred J. Sigworth

Cooperativity among the four subunits helps give rise to the remarkable voltage sensitivity of Shaker potassium channels, whose open probability changes tenfold for a 5-mV change in membrane potential. The cooperativity in these channels is thought to arise from a concerted structural transition as the final step in opening the channel. Recordings of single-channel ionic currents from certain other channel types, as well as our previous recordings from T442S mutant Shaker channels, however, display intermediate conductance levels in addition to the fully open and closed states. These sublevels might represent stepwise, rather than concerted, transitions in the final steps of channel activation. Here, we report a similar fine structure in the closing transitions of Shaker channels lacking the mutation. Describing the deactivation time course with hidden Markov models, we find that two subconductance levels are rapidly traversed during most closing transitions of chimeric, high conductance Shaker channels. The lifetimes of these levels are voltage-dependent, with maximal values of 52 and 22 μs at −100 mV, and the voltage dependences of transitions among these states suggest that they arise from equivalent conformational changes occurring in individual subunits. At least one subconductance level is found to be traversed in normal conductance Shaker channels. We speculate that voltage-dependent conformational changes in the subunits give rise to changes in a “pore gate” associated with the selectivity filter region of the channel, producing the subconductance states. As a control for the hidden Markov analysis, we applied the same procedures to recordings of the recovery from N-type inactivation in Shaker channels. These transitions are found to be instantaneous in comparison.


1994 ◽  
Vol 103 (2) ◽  
pp. 321-362 ◽  
Author(s):  
W N Zagotta ◽  
T Hoshi ◽  
R W Aldrich

Predictions of different classes of gating models involving identical conformational changes in each of four subunits were compared to the gating behavior of Shaker potassium channels without N-type inactivation. Each model was tested to see if it could simulate the voltage dependence of the steady state open probability, and the kinetics of the single-channel currents, macroscopic ionic currents and macroscopic gating currents using a single set of parameters. Activation schemes based upon four identical single-step activation processes were found to be incompatible with the experimental results, as were those involving a concerted, opening transition. A model where the opening of the channel requires two conformational changes in each of the four subunits can adequately account for the steady state and kinetic behavior of the channel. In this model, the gating in each subunit is independent except for a stabilization of the open state when all four subunits are activated, and an unstable closed conformation that the channel enters after opening. A small amount of negative cooperativity between the subunits must be added to account quantitatively for the dependence of the activation time course on holding voltage.


2020 ◽  
Author(s):  
Peter Proks ◽  
Marcus Schewe ◽  
Linus J. Conrad ◽  
Shanlin Rao ◽  
Kristin Rathje ◽  
...  

ABSTRACTThe TREK subfamily of Two-Pore Domain (K2P) K+ channels are inhibited by low micromolar concentrations of fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal target of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. Yet despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms which underlie NFx inhibition remain elusive. Such investigations ideally require examining the effects of the drug on single channel behavior. However, wild-type TREK channels normally exhibit a very low open probability which makes analysis of their inhibition at the single channel level extremely challenging. In this study, we show how the unique behavior of single TREK-2 channels reconstituted in lipid bilayers can be used to study NFx inhibition in detail. Our results reveal the primary mechanism of NFx inhibition is a complex allosteric process that results in both a reduced open probability and single channel conductance. Furthermore, we show the transduction mechanism involved in NFx inhibition can be disrupted by the action of ML335, and can also be subject to desensitization. We also uncover several voltage-dependent effects of NFx inhibition. In addition, we propose a gating scheme that accounts these effects and which provide important insights into the action of agonists and antagonists on K2P channel function.


Sign in / Sign up

Export Citation Format

Share Document