shaker channels
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 1)

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 190
Author(s):  
Yuchen Zhang ◽  
Xuefeng Zhang ◽  
Cuiyun Liu ◽  
Changlong Hu

The slow inactivation of voltage-gated potassium (Kv) channels plays an important role in controlling cellular excitability. Recently, the two hydrogen bonds (H-bonds) formed by W434-D447 and T439-Y445 have been reported to control the slow inactivation in Shaker potassium channels. The four residues are highly conserved among Kv channels. Our objective was to find the roles of the two H-bonds in controlling the slow inactivation of mammalian Kv2.1, Kv2.2, and Kv1.2 channels by point mutation and patch-clamp recording studies. We found that mutations of the residues equivalent to W434 and T439 in Shaker did not change the slow inactivation of the Kv2.1, Kv2.2, and Kv1.2 channels. Surprisingly, breaking of the inter-subunit H-bond formed by W366 and Y376 (Kv2.1 numbering) by various mutations resulted in the complete loss of K+ conductance of the three Kv channels. In conclusion, we found differences in the H-bonds controlling the slow inactivation of the mammalian Kv channels and Shaker channels. Our data provided the first evidence, to our knowledge, that the inter-subunit H-bond formed by W366 and Y376 plays an important role in regulating the K+ conductance of mammalian Kv2.1, Kv2.2, and Kv1.2 channels.


2020 ◽  
Vol 6 (32) ◽  
pp. eabb5734 ◽  
Author(s):  
Shilong Yang ◽  
Yunfei Wang ◽  
Lu Wang ◽  
Peter Kamau ◽  
Hao Zhang ◽  
...  

Animal venoms are powerful, highly evolved chemical weapons for defense and predation. While venoms are used mainly to lethally antagonize heterospecifics (individuals of a different species), nonlethal envenomation of conspecifics (individuals of the same species) is occasionally observed. Both the venom and target specifications underlying these two forms of envenomation are still poorly understood. Here, we show a target-switching mechanism in centipede (Scolopendra subspinipes) venom. On the basis of this mechanism, a major toxin component [Ssm Spooky Toxin (SsTx)] in centipede venom inhibits the Shal channel in conspecifics but not in heterospecifics to cause short-term, recoverable, and nonlethal envenomation. This same toxin causes fatal heterospecific envenomation, for example, by switching its target to the Shaker channels in heterospecifics without inhibiting the Shaker channel of conspecific S. subspinipes individuals. These findings suggest that venom components exhibit intricate coevolution with their targets in both heterospecifics and conspecifics, which enables a single toxin to develop graded intraspecific and interspecific antagonistic interactions.


2020 ◽  
Vol 152 (8) ◽  
Author(s):  
Tibor G. Szanto ◽  
Florina Zakany ◽  
Ferenc Papp ◽  
Zoltan Varga ◽  
Carol J. Deutsch ◽  
...  

Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.


2018 ◽  
Vol 150 (9) ◽  
pp. 1287-1298 ◽  
Author(s):  
Roman V. Frolov

Photoreceptors in the compound eyes of most insect species express two functional types of depolarization-activated potassium currents: a transient A-type current (IA) and a sustained delayed rectifier current (IDR). The role of Shaker-dependent IA in Drosophila melanogaster photoreceptors was previously investigated by comparing intracellular recordings from Shaker and wild-type photoreceptors. Shaker channels were proposed to be involved in low-frequency signal amplification in dim light and reduction of the metabolic cost of information transfer. Here, I study the function of IA in photoreceptors of the cockroach Panchlora nivea using the patch-clamp method. Responses to Gaussian white-noise stimuli reveal that blockade of IA with 4-aminopyridine has no discernible effect on voltage responses or information processing. However, because open-channel blockers are often ineffective at low membrane potentials, no conclusion on the role of IA could be made on the basis of negative results of pharmacological tests. Using a relatively large set of control data, a physiological variability analysis was performed to discern the role of IA. Amplitudes of the IA window current and half-activation potentials correlate strongly with membrane corner frequencies, especially in dim light, indicating that IA facilitates transmission of higher frequencies. Consistent with voltage-dependent inactivation of IA, these correlations decrease with depolarization in brighter backgrounds. In contrast, correlations involving IDR are comparatively weak. Upon reexamining photoreceptor conductance in wild-type and Shaker strains of D. melanogaster, I find a biphasic voltage dependence near the resting potential in a minority of photoreceptors from both strains, indicating that Shaker channels are not crucial for early amplification of voltage signals in D. melanogaster photoreceptors. Leak current in Shaker photoreceptors at the level of the soma is not elevated. These results suggest a novel role for IA in facilitating transmission of high-frequency signals in microvillar photoreceptors.


2013 ◽  
Vol 142 (3) ◽  
pp. 289-303 ◽  
Author(s):  
Yen May Cheng ◽  
Christina M. Hull ◽  
Christine M. Niven ◽  
Ji Qi ◽  
Charlene R. Allard ◽  
...  

Human ether-à-go-go–related gene (hERG, Kv11.1) potassium channels have unusually slow activation and deactivation kinetics. It has been suggested that, in fast-activating Shaker channels, a highly conserved Phe residue (F290) in the S2 segment forms a putative gating charge transfer center that interacts with S4 gating charges, i.e., R362 (R1) and K374 (K5), and catalyzes their movement across the focused electric field. F290 is conserved in hERG (F463), but the relevant residues in the hERG S4 are reversed, i.e., K525 (K1) and R537 (R5), and there is an extra positive charge adjacent to R537 (i.e., K538). We have examined whether hERG channels possess a transfer center similar to that described in Shaker and if these S4 charge differences contribute to slow gating in hERG channels. Of five hERG F463 hydrophobic substitutions tested, F463W and F463Y shifted the conductance–voltage (G-V) relationship to more depolarized potentials and dramatically slowed channel activation. With the S4 residue reversals (i.e., K525, R537) taken into account, the closed state stabilization by F463W is consistent with a role for F463 that is similar to that described for F290 in Shaker. As predicted from results with Shaker, the hERG K525R mutation destabilized the closed state. However, hERG R537K did not stabilize the open state as predicted. Instead, we found the neighboring K538 residue to be critical for open state stabilization, as K538R dramatically slowed and right-shifted the voltage dependence of activation. Finally, double mutant cycle analysis on the G-V curves of F463W/K525R and F463W/K538R double mutations suggests that F463 forms functional interactions with K525 and K538 in the S4 segment. Collectively, these data suggest a role for F463 in mediating closed–open equilibria, similar to that proposed for F290 in Shaker channels.


2011 ◽  
Vol 138 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Meng-chin A. Lin ◽  
Jui-Yi Hsieh ◽  
Allan F. Mock ◽  
Diane M. Papazian

During voltage-dependent activation in Shaker channels, four arginine residues in the S4 segment (R1–R4) cross the transmembrane electric field. It has been proposed that R1–R4 movement is facilitated by a “gating charge transfer center” comprising a phenylalanine (F290) in S2 plus two acidic residues, one each in S2 and S3. According to this proposal, R1 occupies the charge transfer center in the resting state, defined as the conformation in which S4 is maximally retracted toward the cytoplasm. However, other evidence suggests that R1 is located extracellular to the charge transfer center, near I287 in S2, in the resting state. To investigate the resting position of R1, we mutated I287 to histidine (I287H), paired it with histidine mutations of key voltage sensor residues, and determined the effect of extracellular Zn2+ on channel activity. In I287H+R1H, Zn2+ generated a slow component of activation with a maximum amplitude (Aslow,max) of ∼56%, indicating that only a fraction of voltage sensors can bind Zn2+ at a holding potential of −80 mV. Aslow,max decreased after applying either depolarizing or hyperpolarizing prepulses from −80 mV. The decline of Aslow,max after negative prepulses indicates that R1 moves inward to abolish ion binding, going beyond the point where reorientation of the I287H and R1H side chains would reestablish a binding site. These data support the proposal that R1 occupies the charge transfer center upon hyperpolarization. Consistent with this, pairing I287H with A359H in the S3–S4 loop generated a Zn2+-binding site. At saturating concentrations, Aslow,max reached 100%, indicating that Zn2+ traps the I287H+A359H voltage sensor in an absorbing conformation. Transferring I287H+A359H into a mutant background that stabilizes the resting state significantly enhanced Zn2+ binding at −80 mV. Our results strongly support the conclusion that R1 occupies the gating charge transfer center in the resting conformation.


2011 ◽  
Vol 100 (5) ◽  
pp. L28-L30 ◽  
Author(s):  
Jérôme J. Lacroix ◽  
Alain J. Labro ◽  
Francisco Bezanilla

Sign in / Sign up

Export Citation Format

Share Document