scholarly journals Diurnal stomatal apertures and density ratios affect whole-canopy stomatal conductance, water-use efficiency and yield

2022 ◽  
Author(s):  
SANBON GOSA ◽  
Bogale Abebe Gebeyo ◽  
Ravitejas Patil ◽  
Ramon Mencia ◽  
Menachem Moshelion

Key physiological traits of plants, such as transpiration and stomatal conductance, are usually studied under steady-state conditions or modeled using only a few measured data points. Those measurements do not reflect the dynamic behavior of the plant in response to field conditions. To overcome this bottleneck, we used a gravimetric functional phenotyping platform and a reverse-phenotyping method to examine the dynamic whole-plant water regulation responses of tomato introgression lines and compared those responses with several years of yield performance in commercial fields. Ideotype lines had highly plastic stomatal conductance and high abaxial to adaxial stomatal density ratios and the size of their stomatal apertures peaked early in the day under water-deficit conditions. These traits resulted in dynamic daily water-use efficiency, which allowed for the rapid recovery of transpiration when irrigation was resumed after a period of imposed drought. We found that stomatal density, the abaxial to adaxial stomatal density ratio and the time of maximum stomatal apertures are crucial for plant adaptation and productivity under drought stress conditions. Abaxial stomatal density was also found to be strongly correlated with the expression of the stomatal-development genes SPCH and ZEP. This study demonstrates how a reverse functional phenotyping approach based on field yield data, continuous and simultaneous whole plant waterbalance measurements and anatomical examination of individual leaves can help us to understand and identify dynamic and complex yield-related physiological traits.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1670
Author(s):  
Brittany Clare Robertson ◽  
Tianhua He ◽  
Chengdao Li

Increased drought frequency due to climate change is limiting the agronomic performance of cereal crops globally, where cultivars often experience negative impacts on yield. Stomata are the living interface responsible for >90% of plant water loss through transpiration. Thus, stomata are a prospective target for improving drought tolerance by enhancing water-use efficiency (WUE) in economically important cereals. Reducing stomatal density through molecular approaches has been shown to improve WUE in many plant species, including the commercial cereals barley, rice, wheat and maize. Rice with reduced stomatal density exhibit yields 27% higher than controls under drought conditions, reflecting the amenability of grasses to stomatal density modification. This review presents a comprehensive overview of stomatal development, with a specific emphasis on the genetic improvement of WUE in the grass lineage. Improved understanding of the genetic regulation of stomatal development in the grasses, provides significant promise to improve cereal adaptivity in drought-prone environments whilst maximising yield potential. Rapid advances in gene-editing and ‘omics’ technologies may allow for accelerated adaption of future commercial varieties to water restriction. This may be achieved through a combination of genomic sequencing data and CRISPR-Cas9-directed genetic modification approaches.


2021 ◽  
Author(s):  
Walter K Israel ◽  
Alex Watson-Lazowski ◽  
Zhong-Hua Chen ◽  
Oula Ghannoum

We investigated how stomatal morphology and physiology control intrinsic leaf water use efficiency (iWUE) in grasses. Two C3 and six C4 grasses were grown at ambient (400 μl L-1) or glacial CO2 (180 μl L-1) and high (1000 μmol m-2 s-1) or low light intensity (200 μmol m-2 s-1). C4 grasses tended to have higher iWUE and CO2 assimilation rates, and lower stomatal conductance (gs), operational stomatal aperture (aop) and guard cell K+ influx rate relative to C3 grasses, while stomatal size (SS) and stomatal density (SD) did not vary according to the photosynthetic type. Overall, iWUE and gs depended most on aop and density of open stomata. In turn, aop correlated with K+ influx, stomatal opening speed on transition to high light and SS. Species with higher SD had smaller and faster-opening stomata. Although C4 grasses operated with lower gs and aop at ambient CO2, they showed a greater potential to open stomata relative to maximal stomatal conductance (gmax), indicating heightened stomatal sensitivity and control. We uncover novel links between aop, gs, iWUE and K+ influx amongst grasses and differential K+ influx responses of C4 guard cells to low light, revealing molecular targets for breeding crops with high iWUE.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Sungeun Lim ◽  
Jongyun Kim

Different light qualities affect plant growth and physiological responses, including stomatal openings. However, most researchers have focused on stomatal responses to red and blue light only, and the direct measurement of evapotranspiration has not been examined. Therefore, we quantified the evapotranspiration of sweet basil under various red (R), green (G), and blue (B) combinations using light-emitting diodes (LEDs) and investigated its stomatal responses. Seedlings were subjected to five different spectral treatments for two weeks at a photosynthetic photon flux density of 200 µmol m−2 s−1. The ratios of the RGB light intensities were as follows: R 100% (R100), R:G = 75:25 (R75G25), R:B = 75:25 (R75B25), R:G:B = 60:20:20 (R60G20B20), and R:G:B = 31:42:27 (R31G42B27). During the experiment, the evapotranspiration of the plants was measured using load cells. Although there were no significant differences in growth parameters among the treatments, the photosynthetic rate and stomatal conductance were higher in plants grown under blue LEDs (R75B25, R60G20B20, and R31G42B27) than in the R100 treatment. The amount of water used was different among the treatments (663.5, 726.5, 728.7, 778.0, and 782.1 mL for the R100, R75G25, R60G20B20, R75B25, and R31G42B27 treatments, respectively). The stomatal density was correlated with the blue light intensity (p = 0.0024) and with the combined intensity of green and blue light (p = 0.0029); therefore, green light was considered to promote the stomatal development of plants together with blue light. Overall, different light qualities affected the water use of plants by regulating stomatal conductance, including changes in stomatal density.


2016 ◽  
Vol 44 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Bianca do Carmo SILVA ◽  
Pêola Reis de SOUZA ◽  
Daihany Moraes CALLEGARI ◽  
Vanessa Ferreira ALVES ◽  
Allan Klynger da Silva LOBATO ◽  
...  

Boron (B) is a very important nutrient required by forest plants; when supplied in adequate amounts, plants can ameliorate the negative effects of abiotic stresses. The objective of this study was to (i) investigate gas exchange, (ii) measure oxidant and antioxidant compounds, and (iii) respond how B supply acts on tolerance mechanism to water deficit in young Schizolobium parahyba plants. The experiment employed a factorial that was entirely randomised, with two boron levels (25 and 250 µmol L-1, simulating conditions of sufficient B and high B, respectively) and two water conditions (control and water deficit). Water deficit induced negative modifications on net photosynthetic rate, stomatal conductance and water use efficiency, while B high promoted intensification of the effects on stomatal conductance and water use efficiency. Hydrogen peroxide and electrolyte leakage of both tissues suffered non-significant increases after B high and when applied water deficit. Ascorbate levels presented increases after water deficit and B high to leaf and root. Our results suggested that the tolerance mechanism to water deficit in young Schizolobium parahyba plants is coupled to increases in total glutathione and ascorbate aiming to control the overproduction of hydrogen peroxide and alleviates the negative consequences on electrolyte leakage and gas exchange. In relation to B supply, this study proved that sufficient level promoted better responses under control and water deficit conditions.


2018 ◽  
Vol 36 (1) ◽  
pp. 7-13
Author(s):  
Melissa C. Smith ◽  
Richard N. Mack

Abstract Suitable plant water dynamics and the ability to withstand periods of low moisture input facilitate plant establishment in seasonally arid regions. Temperate bamboos are a major constituent of mixed evergreen and deciduous forests throughout temperate East Asia but play only an incidental role in North American forests and are altogether absent in the Pacific Northwest forest. Many bamboo species are classified as mesic or riparian, but none are considered drought tolerant. To assess their ability to withstand low water, we subjected five Asian temperate and one North American temperate bamboo species to three irrigation treatments: 100%, 50%, and 10% replacement of water lost through evapotranspiration. Plants were irrigated every four days over a 31-day period. Plant response to treatments was measured with stomatal conductance, leaf xylem water potentials, and intrinsic water use efficiency (iWUE). Pleioblastus distichus and Pseudosasa japonica showed significant reductions in conductance between high and low irrigation treatments. Sasa palmata had significantly lower stomatal conductance in all treatments. Pleioblastus chino displayed significantly higher iWUE in the mid irrigation treatment and Arunindaria gigantea displayed significantly lower iWUE than P. chino and S. palmata in the low irrigation treatment. The Asian bamboo species examined here tolerate low water availability and readily acclimate to different soil moisture conditions. Index words: Temperate bamboos, irrigation response, stomatal conductance, intrinsic water use efficiency. Species used in this study: Giant Cane [Arundinaria gigantea (Walt.) Muhl.]; Pleioblastus chino (Franchet & Savatier) Makino; Pleioblastus distichus (Mitford) Nakai; Pseudosasa japonica (Makino); Sasa palmata (Bean) Nakai.


2021 ◽  
Author(s):  
Fasih Ullah Haider ◽  
Muhammad Farooq ◽  
Muhammad Naveed ◽  
Sardar Alam Cheema ◽  
Noor ul Ain ◽  
...  

Abstract The synergistic effects of biochar and microorganisms on the adsorption of Cd and on cereal plant physiology remained unclear. Therefore, this experiment was performed to evaluate the combined effects of biochar pyrolyzed from (maize-straw (BC1), cow-manure (BC2), and poultry-manure (BC3), and microorganisms including (T. harzianum L. and B. subtilis L.), to evaluate, how incorporation of biochar positively influences microorganisms growth and nutrients uptake in plant, and how it mitigates under various Cd-stress levels (0, 10, and 30ppm). Cd2 (30 ppm) had the highest reduction in the intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate, which were 22.36, 34.50, 40.45, 20.66, 29.07, and 22.41% respectively lower than control Cd0 (0 ppm). Sole application BC, resulted in enhanced intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate were recorded in BC2, which were 7.27, 20.54, 23.80, 5.96, 13.37, and 13.50% respectively greater as compared to control and decreased the Cd-concentration in root and shoot of maize by 34.07 and 32.53%, respectively as compared to control. Similarly, among sole microorganism’s inoculation, minimized the Cd-concentration in shoot, root, and soil by 23.77, 20.15, and 10.35% respectively than control. These results suggested that integrated application of cow manure biochar BC2 and inoculation of microorganisms MI3 as soil amendments had synergistic effects in improving the adsorption of nutrients and decreasing the Cd-uptake in maize, and enhancing the physiology of plant grown in Cd-polluted soils as opposed to using either biochar or inoculating microorganisms alone.


Author(s):  
Juan D. Franco‐Navarro ◽  
Miguel A. Rosales ◽  
Paloma Cubero‐Font ◽  
Purificación Calvo ◽  
Rosario Álvarez ◽  
...  

2014 ◽  
Vol 94 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Olanike Aladenola ◽  
Chandra Madramootoo

Aladenola, O. and Madramootoo, C. 2014. Response of greenhouse-grown bell pepper (Capsicum annuum L.) to variable irrigation. Can. J. Plant Sci. 94: 303–310. In order to optimize water use in bell pepper production information about the appropriate irrigation water applications and agronomic and physiological response to mild and severe water stress is necessary. Different water applications were tested on yield, quality and water stress threshold of greenhouse-grown bell pepper (Capsicum annuum L.) cultivar Red Knight in 2011 and 2012 on the Macdonald Campus of McGill University, Ste Anne De Bellevue, QC. The study was carried out on a soil substrate in the greenhouse. Irrigation was scheduled with four treatments:120% (T1), 100% (T2), 80% (T3), and 40% (T4) replenishment of crop evapotranspiration in a completely randomized design. The highest marketable yield, water use efficiency and irrigation water use efficiency were obtained with T1 in both years. T1 received 20% more water than T2 to produce 23% more marketable yield than T2. Fruit total soluble solids content was highest in T4, and smallest in T1. The mean crop water stress index (CWSI) of the irrigation treatments ranged between 0.08 and 1.18. Leaf stomatal conductance of bell pepper was 75 to 80% lower in T4 than in T1. Regression obtained between stomatal conductance and CWSI resulted in a polynomial curve with coefficients of determination of 0.88 and 0.97 in 2011 and 2012, respectively. The result from this study indicate that the yield derived justifies the use of an extra quantity of water. Information from this study will help water regulators to make appropriate decision about water to be allocated for greenhouse production of bell pepper.


Sign in / Sign up

Export Citation Format

Share Document