scholarly journals Strand-switching mechanism of Pif1 helicase induced by its collision with a G-quadruplex embedded in dsDNA

2022 ◽  
Author(s):  
Jessica Valle-Orero ◽  
Martin Rieu ◽  
Phong Lan Thao Tran ◽  
Alexandra Joubert ◽  
Jean-Francois Allemand ◽  
...  

G-rich sequences found at multiple sites throughout all genomes may form secondary structures called G-quadruplexes (G4), which act as roadblocks for molecular motors. Among the enzymes thought to process these structures, the Pif1 DNA helicase is considered as an archetypical G4-resolvase and its absence has been linked to G4-related genomic instabilities in yeast. Here we developed a single-molecule assay to observe Pif1 opening a DNA duplex and resolving the G4 in real time. In support of former enzymological studies, we show that the helicase reduces the lifetime of G4 from hours to seconds. However, we observe that in presence of a G4, Pif1 exhibits a strong strand switching behavior, which can lead to Pif1 escaping G4 resolution, depending on the structural context surrounding the substrate. This behavior is also detected in presence of other roadblocks (LNA or RNA). We propose that the efficiency of Pif1 to remove a roadblock (G4 or other) is affected by its strand switching behavior and depends on the context surrounding the obstacle. We discuss how this switching behavior may explain several aspects of Pif1 substrate preference and affect its activity as a G4 resolvase in vivo.

2019 ◽  
Vol 20 (12) ◽  
pp. 2884 ◽  
Author(s):  
Sefan Asamitsu ◽  
Masayuki Takeuchi ◽  
Susumu Ikenoshita ◽  
Yoshiki Imai ◽  
Hirohito Kashiwagi ◽  
...  

The most common form of DNA is a right-handed helix or the B-form DNA. DNA can also adopt a variety of alternative conformations, non-B-form DNA secondary structures, including the DNA G-quadruplex (DNA-G4). Furthermore, besides stem-loops that yield A-form double-stranded RNA, non-canonical RNA G-quadruplex (RNA-G4) secondary structures are also observed. Recent bioinformatics analysis of the whole-genome and transcriptome obtained using G-quadruplex–specific antibodies and ligands, revealed genomic positions of G-quadruplexes. In addition, accumulating evidence pointed to the existence of these structures under physiologically- and pathologically-relevant conditions, with functional roles in vivo. In this review, we focused on DNA-G4 and RNA-G4, which may have important roles in neuronal function, and reveal mechanisms underlying neurological disorders related to synaptic dysfunction. In addition, we mention the potential of G-quadruplexes as therapeutic targets for neurological diseases.


2020 ◽  
Vol 477 (16) ◽  
pp. 2935-2947
Author(s):  
Ryan J. Buckley ◽  
Kevin Kramm ◽  
Christopher D. O. Cooper ◽  
Dina Grohmann ◽  
Edward L. Bolt

The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the ‘parental’ DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jaba Mitra ◽  
Taekjip Ha

Abstract Recent advances in fluorogen-binding “light-up” RNA aptamers have enabled protein-free detection of RNA in cells. Detailed biophysical characterization of folding of G-Quadruplex (GQ)-based light-up aptamers such as Spinach, Mango and Corn is still lacking despite the potential implications on their folding and function. In this work we employ single-molecule fluorescence-force spectroscopy to examine mechanical responses of Spinach2, iMangoIII and MangoIV. Spinach2 unfolds in four discrete steps as force is increased to 7 pN and refolds in reciprocal steps upon force relaxation. In contrast, GQ-core unfolding in iMangoIII and MangoIV occurs in one discrete step at forces >10 pN and refolding occurred at lower forces showing hysteresis. Co-transcriptional folding using superhelicases shows reduced misfolding propensity and allowed a folding pathway different from refolding. Under physiologically relevant pico-Newton levels of force, these aptamers may unfold in vivo and subsequently misfold. Understanding of the dynamics of RNA aptamers will aid engineering of improved fluorogenic modules for cellular applications.


2021 ◽  
Author(s):  
Gregory J Hoeprich ◽  
Shashank Shekhar ◽  
Bruce L Goode

IQGAP is a conserved family of actin-binding proteins with essential roles in cell motility, cytokinesis, and cell adhesion, yet it has remained poorly understood how IQGAP proteins directly regulate actin filament dynamics. To close this gap, we used single-molecule and single-filament TIRF microscopy to directly visualize IQGAP regulating actin dynamics in real time. To our knowledge, this is the first study to do so. Our results show that full-length human IQGAP1 forms dimers that stably bind to filament sides and transiently cap barbed ends. These interactions organize actin filaments into thin bundles, suppress barbed end growth, and inhibit filament disassembly. Surprisingly, each activity depends on distinct combinations of IQGAP1 domains and/or dimerization, suggesting that different mechanisms underlie each functional effect on actin. These observations have important implications for how IQGAP functions as a direct actin regulator in vivo, and how it is deployed and regulated in different biological settings.


2010 ◽  
Vol 430 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Cyril M. Sanders

Pif1 proteins are helicases that in yeast are implicated in the maintenance of genome stability. One activity of Saccharomyces cerevisiae Pif1 is to stabilize DNA sequences that could otherwise form deleterious G4 (G-quadruplex) structures by acting as a G4 resolvase. The present study shows that human Pif1 (hPif1, nuclear form) is a G4 DNA-binding and resolvase protein and that these activities are properties of the conserved helicase domain (amino acids 206–620 of 641, hPifHD). hPif1 preferentially bound synthetic G4 DNA relative to ssDNA (single-stranded DNA), dsDNA (double-stranded DNA) and a partially single-stranded duplex DNA helicase substrate. G4 DNA unwinding, but not binding, required an extended (>10 nucleotide) 5′ ssDNA tail, and in competition assays, G4 DNA was an ineffective suppressor of helicase activity compared with ssDNA. These results suggest a distinction between the determinants of G4 DNA binding and the ssDNA interactions required for helicase action and that hPif1 may act on G4 substrates by binding alone or as a resolvase. Human Pif1 could therefore have a role in processing G4 structures that arise in the single-stranded nucleic acid intermediates formed during DNA replication and gene expression.


PLoS Genetics ◽  
2009 ◽  
Vol 5 (5) ◽  
pp. e1000475 ◽  
Author(s):  
Cyril Ribeyre ◽  
Judith Lopes ◽  
Jean-Baptiste Boulé ◽  
Aurèle Piazza ◽  
Aurore Guédin ◽  
...  

2019 ◽  
Vol 116 (19) ◽  
pp. 9350-9359 ◽  
Author(s):  
Linnea I. Jansson ◽  
Jendrik Hentschel ◽  
Joseph W. Parks ◽  
Terren R. Chang ◽  
Cheng Lu ◽  
...  

Telomerase reverse transcribes short guanine (G)-rich DNA repeat sequences from its internal RNA template to maintain telomere length. G-rich telomere DNA repeats readily fold into G-quadruplex (GQ) structures in vitro, and the presence of GQ-prone sequences throughout the genome introduces challenges to replication in vivo. Using a combination of ensemble and single-molecule telomerase assays, we discovered that GQ folding of the nascent DNA product during processive addition of multiple telomere repeats modulates the kinetics of telomerase catalysis and dissociation. Telomerase reactions performed with telomere DNA primers of varying sequence or using GQ-stabilizing K+ versus GQ-destabilizing Li+ salts yielded changes in DNA product profiles consistent with formation of GQ structures within the telomerase–DNA complex. Addition of the telomerase processivity factor POT1–TPP1 altered the DNA product profile, but was not sufficient to recover full activity in the presence of Li+ cations. This result suggests GQ folding synergizes with POT1–TPP1 to support telomerase function. Single-molecule Förster resonance energy transfer experiments reveal complex DNA structural dynamics during real-time catalysis in the presence of K+ but not Li+, supporting the notion of nascent product folding within the active telomerase complex. To explain the observed distributions of telomere products, we globally fit telomerase time-series data to a kinetic model that converges to a set of rate constants describing each successive telomere repeat addition cycle. Our results highlight the potential influence of the intrinsic folding properties of telomere DNA during telomerase catalysis, and provide a detailed characterization of GQ modulation of polymerase function.


2017 ◽  
Author(s):  
Nicholas M. Andis ◽  
Christopher W. Sausen ◽  
Ashna Alladin ◽  
Matthew L. Bochman

ABSTRACTPIF1 family helicases are conserved from bacteria to man. With the exception of the well-studied yeast PIF1 helicases (e.g., ScPif1 and ScRrm3), however, very little is known about how these enzymes help maintain genome stability. Indeed, we lack a basic understanding of the protein domains found N- and C-terminal to the characteristic central PIF1 helicase domain in these proteins. Here, using chimeric constructs, we show that the ScPif1 and ScRrm3 helicase domains are interchangeable and that the N-terminus of ScRrm3 is important for its functionin vivo. This suggests that PIF1 family helicases evolved functional modules fused to a generic motor domain. To investigate this hypothesis, we characterized the biochemical activities of the PIF1 helicase from the thermophilic bacteriumThermotoga elfii(TePif1), which contains a C-terminal WYL domain of unknown function. Like helicases from other thermophiles, recombinant TePif1 was easily prepared, thermostablein vitro, and displayed activities similar to its eukaryotic homologs. We also found that the WYL domain was necessary for high-affinity single-stranded DNA (ssDNA) binding and affected both ATPase and helicase activities. Deleting the WYL domain from TePif1 or mutating conserved residues in the predicted ssDNA binding site uncoupled ATPase activity and DNA unwinding, leading to higher rates of ATP hydrolysis but less efficient DNA helicase activity. Our findings suggest that the domains of unknown function found in eukaryotic PIF1 helicases may also confer functional specificity and additional activities to these enzymes, which should be investigated in future work.


Sign in / Sign up

Export Citation Format

Share Document