scholarly journals The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo

PLoS Genetics ◽  
2009 ◽  
Vol 5 (5) ◽  
pp. e1000475 ◽  
Author(s):  
Cyril Ribeyre ◽  
Judith Lopes ◽  
Jean-Baptiste Boulé ◽  
Aurèle Piazza ◽  
Aurore Guédin ◽  
...  
2022 ◽  
Author(s):  
Jessica Valle-Orero ◽  
Martin Rieu ◽  
Phong Lan Thao Tran ◽  
Alexandra Joubert ◽  
Jean-Francois Allemand ◽  
...  

G-rich sequences found at multiple sites throughout all genomes may form secondary structures called G-quadruplexes (G4), which act as roadblocks for molecular motors. Among the enzymes thought to process these structures, the Pif1 DNA helicase is considered as an archetypical G4-resolvase and its absence has been linked to G4-related genomic instabilities in yeast. Here we developed a single-molecule assay to observe Pif1 opening a DNA duplex and resolving the G4 in real time. In support of former enzymological studies, we show that the helicase reduces the lifetime of G4 from hours to seconds. However, we observe that in presence of a G4, Pif1 exhibits a strong strand switching behavior, which can lead to Pif1 escaping G4 resolution, depending on the structural context surrounding the substrate. This behavior is also detected in presence of other roadblocks (LNA or RNA). We propose that the efficiency of Pif1 to remove a roadblock (G4 or other) is affected by its strand switching behavior and depends on the context surrounding the obstacle. We discuss how this switching behavior may explain several aspects of Pif1 substrate preference and affect its activity as a G4 resolvase in vivo.


1995 ◽  
Vol 15 (8) ◽  
pp. 4249-4259 ◽  
Author(s):  
A M Yahanda ◽  
J M Bruner ◽  
L A Donehower ◽  
R S Morrison

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3692-3700 ◽  
Author(s):  
Hui-Ping Gu ◽  
Sen Lin ◽  
Ming Xu ◽  
Hai-Yi Yu ◽  
Xiao-Jun Du ◽  
...  

Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Paul E. Reyes-Gutiérrez ◽  
Tomáš Kapal ◽  
Blanka Klepetářová ◽  
David Šaman ◽  
Radek Pohl ◽  
...  

2002 ◽  
Vol 195 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Rodrig Marculescu ◽  
Trang Le ◽  
Paul Simon ◽  
Ulrich Jaeger ◽  
Bertrand Nadel

Most lymphoid malignancies are initiated by specific chromosomal translocations between immunoglobulin (Ig)/T cell receptor (TCR) gene segments and cellular proto-oncogenes. In many cases, illegitimate V(D)J recombination has been proposed to be involved in the translocation process, but this has never been functionally established. Using extra-chromosomal recombination assays, we determined the ability of several proto-oncogenes to target V(D)J recombination, and assessed the impact of their recombinogenic potential on translocation rates in vivo. Our data support the involvement of 2 distinct mechanisms: translocations involving LMO2, TAL2, and TAL1 in T cell acute lymphoblastic leukemia (T-ALL), are compatible with illegitimate V(D)J recombination between a TCR locus and a proto-oncogene locus bearing a fortuitous but functional recombination site (type 1); in contrast, translocations involving BCL1 and BCL2 in B cell non-Hodgkin’s lymphomas (B-NHL), are compatible with a process in which only the IgH locus breaks are mediated by V(D)J recombination (type 2). Most importantly, we show that the t(11;14)(p13;q32) translocation involving LMO2 is present at strikingly high frequency in normal human thymus, and that the recombinogenic potential conferred by the LMO2 cryptic site is directly predictive of the in vivo level of translocation at that locus. These findings provide new insights into the regulation forces acting upon genomic instability in B and T cell tumorigenesis.


2018 ◽  
Vol 125 ◽  
pp. 39-53 ◽  
Author(s):  
Rudradip Pattanayak ◽  
Atish Barua ◽  
Amlan Das ◽  
Tanima Chatterjee ◽  
Adrija Pathak ◽  
...  

2020 ◽  
Vol 48 (21) ◽  
pp. 11942-11957
Author(s):  
Giulia Miglietta ◽  
Marco Russo ◽  
Giovanni Capranico

Abstract Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.


2018 ◽  
Author(s):  
Yuxiang Wang ◽  
Jie Yang ◽  
Wei Wu ◽  
Rachna Shah ◽  
Carla Danussi ◽  
...  

AbstractMutational inactivation of ATRX (α-thalassemia mental retardation X-linked) represents a defining molecular alteration in large subsets of malignant glioma. Yet the pathogenic consequences of ATRX deficiency remain unclear, as do tractable mechanisms for its therapeutic targeting. Here we report that ATRX loss in isogenic glioma model systems induces replication stress and DNA damage by way of G-quadruplex (G4) DNA secondary structure. Moreover, these effects are associated with the acquisition of disease-relevant copy number alterations over time. We then demonstrate, both in vitro and in vivo, that ATRX deficiency selectively enhances DNA damage and cell death following chemical G4 stabilization. Finally, we show that G4 stabilization synergizes with other DNA-damaging therapies, including ionizing radiation, in the ATRX-deficient context. Our findings reveal novel pathogenic mechanisms driven by ATRX deficiency in glioma, while also pointing to tangible strategies for drug development.


2020 ◽  
Vol 48 (21) ◽  
pp. 12380-12393
Author(s):  
Chiara Platella ◽  
Marko Trajkovski ◽  
Filippo Doria ◽  
Mauro Freccero ◽  
Janez Plavec ◽  
...  

Abstract Naphthalene diimides showed significant anticancer activity in animal models, with therapeutic potential related to their ability to strongly interact with G-quadruplexes. Recently, a trifunctionalized naphthalene diimide, named NDI-5, was identified as the best analogue of a mini-library of novel naphthalene diimides for its high G-quadruplex binding affinity along with marked, selective anticancer activity, emerging as promising candidate drug for in vivo studies. Here we used NMR, dynamic light scattering, circular dichroism and fluorescence analyses to investigate the interactions of NDI-5 with G-quadruplexes featuring either parallel or hybrid topology. Interplay of different binding modes of NDI-5 to G-quadruplexes was observed for both parallel and hybrid topologies, with end-stacking always operative as the predominant binding event. While NDI-5 primarily targets the 5′-end quartet of the hybrid G-quadruplex model (m-tel24), the binding to a parallel G-quadruplex model (M2) occurs seemingly simultaneously at the 5′- and 3′-end quartets. With parallel G-quadruplex M2, NDI-5 formed stable complexes with 1:3 DNA:ligand binding stoichiometry. Conversely, when interacting with hybrid G-quadruplex m-tel24, NDI-5 showed multiple binding poses on a single G-quadruplex unit and/or formed different complexes comprising two or more G-quadruplex units. NDI-5 produced stabilizing effects on both G-quadruplexes, forming complexes with dissociation constants in the nM range.


Sign in / Sign up

Export Citation Format

Share Document