scholarly journals RSV Downregulates IL-21/IL-21R On TFH Cells Via PD-L1 Induction In APCs Impairing Protective Humoral Responses

2017 ◽  
Author(s):  
Rodrigo Benedetti Gassen ◽  
Tiago Fazolo ◽  
Deise Nascimento de Freitas ◽  
Thiago Jesus Borges ◽  
Fabio Maito ◽  
...  

Respiratory syncytial virus (RSV) is the major cause of hospitalization for children under two years of age. RSV vaccines are currently unavailable, and children suffering from multiple reinfections by the same viral strain, fail to develop protective memory responses. Follicular helper T (TFH) cells specialize in providing B cell help to antibody production and affinity maturation, mainly via IL-21 secretion. Although RSV-specific antibodies can be detected upon infection, how they are generated and their relevance against disease protection has not been fully examined. Here, we observed that RSV expands a functionally impaired murine TFH cell population in vitro and vivo, with downregulated IL-21R expression and IL-21 production. IL-21 treatment of RSV-infected mice, however, increased TFH cells frequency, enhanced the germinal center reaction and improved protective humoral immune responses by increasing viral protein F specific antibody avidity and neutralization capacity. In vivo, it protected from RSV infection, decreasing lung inflammation. Passive immunization with purified IgG from IL-21 treated RSV-infected mice protected against RSV infection. Both viable and UV-inactivated RSV induced PD-L1 expression on B cells and DCs, however, only in DCs a direct effect of RSV was detected. Blocking PD-L1 during infection recovered IL-21R expression in TFH and B cells and increased secretion of IL-21 by TFH cells in a DC-dependent manner. Our results unveil a novel pathway by which RSV affects TFH cells activity, reducing levels of IL-21 and its receptor, by increasing PD-L1 expression on APCs. These results highlight the PD-L1/IL-21 axis importance for the generation of protective responses to RSV infection.

2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 548
Author(s):  
Kiramage Chathuranga ◽  
Asela Weerawardhana ◽  
Niranjan Dodantenna ◽  
Lakmal Ranathunga ◽  
Won-Kyung Cho ◽  
...  

Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Aimin Tang ◽  
Zhifeng Chen ◽  
Kara S. Cox ◽  
Hua-Poo Su ◽  
Cheryl Callahan ◽  
...  

Abstract Respiratory syncytial virus (RSV) infection is the leading cause of hospitalization and infant mortality under six months of age worldwide; therefore, the prevention of RSV infection in all infants represents a significant unmet medical need. Here we report the isolation of a potent and broadly neutralizing RSV monoclonal antibody derived from a human memory B-cell. This antibody, RB1, is equipotent on RSV A and B subtypes, potently neutralizes a diverse panel of clinical isolates in vitro and demonstrates in vivo protection. It binds to a highly conserved epitope in antigenic site IV of the RSV fusion glycoprotein. RB1 is the parental antibody to MK-1654 which is currently in clinical development for the prevention of RSV infection in infants.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Marie Galloux ◽  
Nadège Gsponer ◽  
Vanessa Gaillard ◽  
Brice Fenner ◽  
Thibaut Larcher ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.


Author(s):  
Ricardo Wesley Alberca-Custódio ◽  
Luciana Mirotti ◽  
Eliane Gomes ◽  
Fernanda Peixoto Barbosa Nunes ◽  
Raquel Souza Vieira ◽  
...  

Elevated levels of immunoglobulin E (IgE) are associated with allergies and other immunological disorders. Experimentally, sensitization with alum adjuvant favors IgE production while CpG-ODN adjuvant, a synthetic toll-like receptor 9 (TLR9) agonist, inhibits it. The cellular mechanisms underlying TLR-regulation of immunoglobulin production are still controversial. Specifically, TLR-mediated IgE regulation in vivo is not yet known. We show that augmented levels of IgE induced by sensitizations to OVA with or without alum adjuvant or with OVA-pulsed dendritic cells (DCs) were inhibited when sensitization to OVA was performed in the presence of CpG. Notably, CpG-mediated suppression of IgE production required MyD88-expression on DCs but not on B-cells. This contrasts with previous reports of in vitro regulation IgE where CpG acted directly on B cells via MyD88 pathway. In addition, CpG also inhibited IgE production in a MyD88-dependent manner when sensitization was performed with OVA-pulsed DCs. Finally, CpG signaling through MyD88 pathway was also necessary and sufficient to prevent anaphylactic antibody production involved in active cutaneous anaphylaxis.


Author(s):  
Debra T Linfield ◽  
Nannan Gao ◽  
Andjela Raduka ◽  
Terri J Harford ◽  
Giovanni Piedimonte ◽  
...  

The airway epithelium's ability to repair itself after injury, known as epithelial restitution, is an essential mechanism enabling the respiratory tract's normal functions. Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections worldwide. We sought to determine whether RSV delays the airway epithelium wound repair process both in vitro and in vivo. We found that RSV infection attenuated epithelial cell migration, a step in wound repair, promoted stress fiber formation, and mediated assembly of large focal adhesions (FA). Inhibition of Rho kinase (ROCK), a master regulator of actin function, reversed these effects. There was increased RhoA and phospho-myosin light chain (pMLC2) following RSV infection. In vivo, mice were intraperitoneally inoculated with naphthalene to induce lung injury, followed by RSV infection. RSV infection delayed re-epithelialization. There were increased concentrations of pMLC2 in day 7 naphthalene plus RSV animals which normalized by day 14. This study suggests a key mechanism by which RSV infection delays wound healing.


2002 ◽  
Vol 22 (13) ◽  
pp. 4771-4780 ◽  
Author(s):  
Kuo-I Lin ◽  
Cristina Angelin-Duclos ◽  
Tracy C. Kuo ◽  
Kathryn Calame

ABSTRACT B-cell lineage-specific activator protein (BSAP), encoded by the Pax-5 gene, is critical for B-cell lineage commitment and B-cell development but is not expressed in terminally differentiated B cells. We demonstrate a direct connection between BSAP and B-lymphocyte-induced maturation protein 1 (Blimp-1), a transcriptional repressor that is sufficient to drive plasmacytic differentiation. Blimp-1 binds a site on the Pax-5 promoter in vitro and in vivo and represses the Pax-5 promoter in a binding-site-dependent manner. By ectopically expressing Blimp-1 or a competitive inhibitor of Blimp-1, we show that Blimp-1 is both necessary and sufficient to repress Pax-5 during plasmacytic differentiation of primary splenic B cells. Blimp-1-dependent repression of Pax-5 is sufficient to regulate BSAP targets CD19 and J chain and is necessary but not sufficient to induce XBP-1. We further show that repression of Pax-5 is required for Blimp-1 to drive differentiation of splenocytes to immunoglobulin M-secreting cells. Thus, repression of Pax-5 plays a critical role in the Blimp-1-dependent program of plasmacytic differentiation.


Sign in / Sign up

Export Citation Format

Share Document