scholarly journals Physiological and pathological brain activation in the anesthetized rat produces hemodynamic-dependent cortical temperature increases that can confound the BOLD fMRI signal

2017 ◽  
Author(s):  
Samuel S. Harris ◽  
Luke W. Boorman ◽  
Devashish Das ◽  
Aneurin J. Kennerley ◽  
Paul S. Sharp ◽  
...  

AbstractAnesthetized rodent models are ubiquitous in pre-clinical neuroimaging studies. However, because the associated cerebral morphology and experimental methodology results in a profound negative brain-core temperature differential, cerebral temperature changes during functional activation are likely to be principally driven by local inflow of fresh, core-temperature, blood. This presents a confound to the interpretation of blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data acquired from such models, since this signal is also critically temperature-dependent. Nevertheless, previous investigation on the subject is surprisingly sparse. Here, we address this issue through use of a novel multi-modal methodology in the urethane anesthetized rat. We reveal that sensory stimulation, hypercapnia and recurrent acute seizures induce significant increases in cortical temperature that are preferentially correlated to changes in total hemoglobin concentration, relative to cerebral blood flow and oxidative metabolism. Furthermore, using a phantom-based evaluation of the effect of such temperature changes on the BOLD fMRI signal, we demonstrate a robust inverse relationship between the two. These findings indicate that temperature increases, due to functional hyperemia, should be accounted for to ensure accurate interpretation of BOLD fMRI signals in pre-clinical neuroimaging studies.

2021 ◽  
Author(s):  
Mauro DiNuzzo ◽  
Silvia Mangia ◽  
Marta Moraschi ◽  
Daniele Mascali ◽  
Gisela E. Hagberg ◽  
...  

Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) in primary visual cortex (V1) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering is perceived, without any relation with behavioral or physiological variables. Wheras the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering indicating increased output from V1. These results indicate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD-fMRI.


2020 ◽  
Author(s):  
Mario Gilberto Báez-Yáñez ◽  
Jeroen C.W. Siero ◽  
Natalia Petridou

ABSTRACTBOLD fMRI is a commonly used technique to map brain activity; nevertheless, BOLD fMRI is an indirect measurement of brain function triggered by neurometabolic and neurovascular coupling. Hence, the origin of the BOLD fMRI signal is quite complex, and the signal formation depends, among others, on the geometry of the cortical vasculature and the associated hemodynamic behavior. To characterize and quantify the hemodynamic contributions to the BOLD signal response in humans, it is necessary to adopt a computational model that resembles the human cortical vascular architecture and mimics realistic hemodynamic changes. To this end, we have developed a statistically defined 3D vascular model that resembles the human cortical vasculature. Using this model, we simulated hemodynamic changes triggered by a neuronal activation and local magnetic field disturbances created by the vascular topology and the blood oxygenation changes. The proposed model considers also the biophysical interactions and the intrinsic magnetic properties of the nearby tissue in order to compute a dynamic BOLD fMRI signal response. This computational pipeline results in an integrated biophysical model that can provide a better insight on the understanding and quantification of the hemodynamic fingerprint of the BOLD fMRI signal evolution.


1996 ◽  
Vol 81 (3) ◽  
pp. 1174-1183 ◽  
Author(s):  
H. Obrig ◽  
C. Hirth ◽  
J. G. Junge-Hulsing ◽  
C. Doge ◽  
T. Wolf ◽  
...  

We studied cerebral hemodynamic response to a sequential motor task in 56 subjects to investigate the time course and distribution of blood oxygenation changes as monitored by near-infrared spectroscopy (NIRS). To address whether response is modulated by different performance velocities, a group of subjects (n = 12) was examined while performing the motor task at 1, 2, and 3 Hz. The results demonstrate that 1) the NIRS response reflects localized changes in cerebral hemodynamics, 2) the response, consisting of an increase in oxygenated hemoglobin concentration [oxy-Hb] and a decrease in deoxygenated hemoglobin concentration ([deoxy-Hb]), is lateralized and increases in amplitude with higher performance rates, and 3) changes in [oxy-Hb] and [deoxy-Hb] differ in time course. Changes in [oxy-Hb] are biphasic, with a fast initial increase and a pronounced poststimulus undershoot. The stimulus-associated decrease in [deoxy-Hb] is monophasic, and response latency is greater. We conclude that NIRS is able to detect even small changes in cerebral hemodynamic response to functional stimulation.


NeuroImage ◽  
2008 ◽  
Vol 42 (1) ◽  
pp. 196-206 ◽  
Author(s):  
Bram B. Zandbelt ◽  
Thomas E. Gladwin ◽  
Mathijs Raemaekers ◽  
Mariët van Buuren ◽  
Sebastiaan F. Neggers ◽  
...  

1987 ◽  
Vol 67 (1) ◽  
pp. 137-138 ◽  
Author(s):  
D. I. Sessler ◽  
E. H. Rubinstein ◽  
E. I. Eger

2014 ◽  
Vol 34 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Joonas A Autio ◽  
Artem Shatillo ◽  
Rashid Giniatullin ◽  
Olli H Gröhn

We found novel types of parenchymal functional magnetic resonance imaging (fMRI) signals in the rat brain during large increases in metabolism. Cortical spreading depression (CSD), a self-propagating wave of cellular activation, is associated with several pathologic conditions such as migraine and stroke. It was used as a paradigm to evoke transient neuronal depolarization leading to enhanced energy consumption. Activation of CSD was investigated using spin-lock (SL), diffusion, blood oxygenation level-dependent and cerebral blood volume fMRI techniques. Our results show that the SL-fMRI signal is generated by endogenous parenchymal mechanisms during CSD propagation, and these mechanisms are not associated with hemodynamic changes or cellular swelling. Protein phantoms suggest that pH change alone does not explain the observed SL-fMRI signal changes. However, increased amounts of inorganic phosphates released from high-energy phosphates combined with pH changes may produce SL- power-dependent longitudinal relaxation in the rotating frame ( R1ρ) changes in protein phantoms that are similar to those observed during CSD, as seen before in acute ischemia under our experimental conditions. This links SL-fMRI changes intimately to energy metabolism and supports the use of the SL technique as a new, promising functional approach for noninvasive imaging of metabolic transitions in the active or pathologic brain.


2008 ◽  
Vol 29 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Yuji Shen ◽  
Risto A Kauppinen ◽  
Rishma Vidyasagar ◽  
Xavier Golay

A new functional magnetic resonance imaging (fMRI) technique is proposed based on nulling the extravascular gray matter (GM) signal, using a spatially nonselective inversion pulse. The remaining MR signal provides cerebral blood volume (CBV) information from brain activation. A theoretical framework is provided to characterize the sources of GM-nulled (GMN) fMRI signal, effects of partial voluming of cerebrospinal fluid (CSF) and white matter, and behaviors of GMN fMRI signal during brain activation. Visual stimulation paradigm was used to explore the GMN fMRI signal behavior in the human brain at 3T. It is shown that the GMN fMRI signal increases by 7.2% ± 1.5%, which is two to three times more than that obtained with vascular space occupancy (VASO)-dependent fMRI (−3.2% ± 0.2%) or blood oxygenation level-dependent (BOLD) fMRI (2.9% ± 0.7%), using a TR of 3,000 ms and a resolution of 2 × 2 × 5 mm3. Under these conditions the fMRI signal-to-noise ratio (SNRfMRI) for BOLD, GMN, and VASO images was 4.97 ± 0.76, 4.56 ± 0.86, and 2.43 ± 1.06, respectively. Our study shows that both signal intensity and activation volume in GMN fMRI depend on spatial resolution because of partial voluming from CSF. It is shown that GMN fMRI is a convenient tool to assess CBV changes associated with brain activation.


Sign in / Sign up

Export Citation Format

Share Document