scholarly journals Identification of Cell States Using Super-Enhancer RNA

2017 ◽  
Author(s):  
Yueh-Hua Tu ◽  
Hsueh-Fen Juan ◽  
Hsuan-Cheng Huang

AbstractA new class of regulatory elements called super-enhancers, comprised of multiple neighboring enhancers, have recently been reported to be the key transcriptional drivers of cellular, developmental, and disease states. Here, we propose to define super-enhancer RNA as highly expressed enhancer RNAs that are transcribed from a cluster of localized genomic regions. Using the cap analysis of gene expression sequencing data from FANTOM5, we systematically explored the enhancer and messenger RNA landscapes in hundreds of different cell types in response to various environments. Applying non-negative matrix factorization (NMF) to super-enhancer RNA profiles, we found that different cell types were well classified. In addition, through the NMF of individual time-course profiles from a single cell-type, super-enhancer RNAs were clustered into several states with progressive patterns. We further investigated the enriched biological functions of the proximal genes involved in each pattern, and found that they were associated with the corresponding developmental process. The proposed super-enhancer RNAs can act as a good alternative, without the complicated measurement of histone modifications, for identifying important regulatory elements of cell type specification and identifying dynamic cell states.

BMC Genomics ◽  
2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yueh-Hua Tu ◽  
Hsueh-Fen Juan ◽  
Hsuan-Cheng Huang

Abstract Background A new class of regulatory elements called super-enhancers, comprised of multiple neighboring enhancers, have recently been reported to be the key transcriptional drivers of cellular, developmental, and disease states. Results Here, we defined super-enhancer RNAs as highly expressed enhancer RNAs that are transcribed from a cluster of localized genomic regions. Using the cap analysis of gene expression sequencing data from FANTOM5, we systematically explored the enhancer and messenger RNA landscapes in hundreds of different cell types in response to various environments. Applying non-negative matrix factorization (NMF) to super-enhancer RNA profiles, we found that different cell types were well classified. In addition, through the NMF of individual time-course profiles from a single cell-type, super-enhancer RNAs were clustered into several states with progressive patterns. We further investigated the enriched biological functions of the proximal genes involved in each pattern, and found that they were associated with the corresponding developmental process. Conclusions The proposed super-enhancer RNAs can act as a good alternative, without the complicated measurement of histone modifications, for identifying important regulatory elements of cell type specification and identifying dynamic cell states.


2020 ◽  
Author(s):  
Yi-An Tung ◽  
Wen-Tse Yang ◽  
Tsung-Ting Hsieh ◽  
Yu-Chuan Chang ◽  
June-Tai Wu ◽  
...  

AbstractEnhancers are one class of the regulatory elements that have been shown to act as key components to assist promoters in modulating the gene expression in living cells. At present, the number of enhancers as well as their activities in different cell types are still largely unclear. Previous studies have shown that enhancer activities are associated with various functional data, such as histone modifications, sequence motifs, and chromatin accessibilities. In this study, we utilized DNase data to build a deep learning model for predicting the H3K27ac peaks as the active enhancers in a target cell type. We propose joint training of multiple cell types to boost the model performance in predicting the enhancer activities of an unstudied cell type. The results demonstrated that by incorporating more datasets across different cell types, the complex regulatory patterns could be captured by deep learning models and the prediction accuracy can be largely improved. The analyses conducted in this study demonstrated that the cell type-specific enhancer activity can be predicted by joint learning of multiple cell type data using only DNase data and the primitive sequences as the input features. This reveals the importance of cross-cell type learning, and the constructed model can be applied to investigate potential active enhancers of a novel cell type which does not have the H3K27ac modification data yet.AvailabilityThe accuEnhancer package can be freely accessed at: https://github.com/callsobing/accuEnhancer


GigaScience ◽  
2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Andre Macedo ◽  
Alisson M Gontijo

ABSTRACT Background The human body is made up of hundreds—perhaps thousands—of cell types and states, most of which are currently inaccessible genetically. Intersectional genetic approaches can increase the number of genetically accessible cells, but the scope and safety of these approaches have not been systematically assessed. A typical intersectional method acts like an “AND" logic gate by converting the input of 2 or more active, yet unspecific, regulatory elements (REs) into a single cell type specific synthetic output. Results Here, we systematically assessed the intersectional genetics landscape of the human genome using a subset of cells from a large RE usage atlas (Functional ANnoTation Of the Mammalian genome 5 consortium, FANTOM5) obtained by cap analysis of gene expression sequencing (CAGE-seq). We developed the heuristics and algorithms to retrieve and quality-rank “AND" gate intersections. Of the 154 primary cell types surveyed, >90% can be distinguished from each other with as few as 3 to 4 active REs, with quantifiable safety and robustness. We call these minimal intersections of active REs with cell-type diagnostic potential “versatile entry codes" (VEnCodes). Each of the 158 cancer cell types surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of which were robust to intra- and interindividual variation. Methods for the cross-validation of CAGE-seq–derived VEnCodes and for the extraction of VEnCodes from pooled single-cell sequencing data are also presented. Conclusions Our work provides a systematic view of the intersectional genetics landscape in humans and demonstrates the potential of these approaches for future gene delivery technologies.


2020 ◽  
Vol 15 (01) ◽  
pp. 35-49
Author(s):  
Jingxin Liu ◽  
You Song ◽  
Jinzhi Lei

The cell is the basic functional and biological unit of life, and a complex system that contains a huge number of molecular components. How can we quantify the macroscopic state of a cell from the microscopic information of these molecular components? This is a fundamental question to increase the understanding of the human body. The recent maturation of single-cell RNA sequencing (scRNA-seq) technologies has allowed researchers to gain information on the transcriptomes of individual cells. Although considerable progress has been made in terms of cell-type clustering over the past few years, there is no strong consensus about how to define a cell state from scRNA-seq data. Here, we present single-cell entropy (scEntropy) as an order parameter for cellular transcriptome profiles from scRNA-seq data. scEntropy is a straightforward parameter with which to define the intrinsic transcriptional state of a cell that can provide a quantity to measure the developmental process and to distinguish different cell types. The proposed scEntropy followed by Gaussian mixture model (scEGMM) provides a coherent method of cell-type classification that is simple, includes no parameters or clustering and is comparable to existing machine learning-based methods in benchmarking studies. The results of cell-type classification based on scEGMM are robust and easy to biologically interpret.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2021 ◽  
Author(s):  
Yun Zhang ◽  
Brian Aevermann ◽  
Rohan Gala ◽  
Richard H. Scheuermann

Reference cell type atlases powered by single cell transcriptomic profiling technologies have become available to study cellular diversity at a granular level. We present FR-Match for matching query datasets to reference atlases with robust and accurate performance for identifying novel cell types and non-optimally clustered cell types in the query data. This approach shows excellent performance for cross-platform, cross-sample type, cross-tissue region, and cross-data modality cell type matching.


2020 ◽  
Author(s):  
Yupeng Wang ◽  
Rosario B. Jaime-Lara ◽  
Abhrarup Roy ◽  
Ying Sun ◽  
Xinyue Liu ◽  
...  

AbstractWe propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on sequence features. DNA sequences of “strong enhancer” chromatin states in nine cell types from the ENCODE project were retrieved to build and test enhancer classifiers. For any DNA sequence, sequential k-mer (k=5, 7, 9 and 11) fold changes relative to randomly selected non-coding sequences were used as features for deep learning models. Three deep learning models were implemented, including multi-layer perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). All models in SeqEnhDL outperform state-of-the-art enhancer classifiers including gkm-SVM and DanQ, with regard to distinguishing cell type-specific enhancers from randomly selected non-coding sequences. Moreover, SeqEnhDL is able to directly discriminate enhancers from different cell types, which has not been achieved by other enhancer classifiers. Our analysis suggests that both enhancers and their tissue-specificity can be accurately identified according to their sequence features. SeqEnhDL is publicly available at https://github.com/wyp1125/SeqEnhDL.


2014 ◽  
Author(s):  
Charles G Danko ◽  
Stephanie L Hyland ◽  
Leighton J Core ◽  
Andre L Martins ◽  
Colin T Waters ◽  
...  

Identification of the genomic regions that regulate transcription remains an important open problem. We have recently shown that global run-on and sequencing (GRO-seq) with enrichment for 5′-capped RNAs reveals patterns of divergent transcription that accurately mark active transcriptional regulatory elements (TREs), including enhancers and promoters. Here, we demonstrate that active TREs can be identified with comparable accuracy by applying sensitive machine-learning methods to standard GRO-seq and PRO-seq data, allowing TREs to be assayed together with transcription levels, elongation rates, and other transcriptional features, in a single experiment. Our method, called discriminative Regulatory Element detection from GRO-seq (dREG), summarizes GRO-seq read counts at multiple scales and uses support vector regression to predict active TREs. The predicted TREs are strongly enriched for marks associated with functional elements, including H3K27ac, transcription factor binding sites, eQTLs, and GWAS-associated SNPs. Using dREG, we survey TREs in eight cell types and provide new insights into global patterns of TRE assembly and function.


2020 ◽  
Vol 29 (11) ◽  
pp. 1922-1932
Author(s):  
Priyanka Nandakumar ◽  
Dongwon Lee ◽  
Thomas J Hoffmann ◽  
Georg B Ehret ◽  
Dan Arking ◽  
...  

Abstract Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of ‘expressed’ genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.


Sign in / Sign up

Export Citation Format

Share Document