scholarly journals Running reduces firing but improves coding in rodent higher-order visual cortex

2017 ◽  
Author(s):  
Amelia J. Christensen ◽  
Jonathan W. Pillow

Running profoundly alters stimulus-response properties in mouse primary visual cortex (V1), but its effects in higher-order visual cortex remain unknown. Here we systematically investigated how locomotion modulates visual responses across six visual areas and three cortical layers using a massive dataset from the Allen Brain Institute. Although running has been shown to increase firing in V1, we found that it suppressed firing in higher-order visual areas. Despite this reduction in gain, visual responses during running could be decoded more accurately than visual responses during stationary periods. We show that this effect was not attributable to changes in noise correlations, and propose that it instead arises from increased reliability of single neuron responses during running.

2019 ◽  
Author(s):  
E. Mika Diamanti ◽  
Charu Bai Reddy ◽  
Sylvia Schröder ◽  
Tomaso Muzzu ◽  
Kenneth D. Harris ◽  
...  

During navigation, the visual responses of neurons in primary visual cortex (V1) are modulated by the animal’s spatial position. Here we show that this spatial modulation is similarly present across multiple higher visual areas but largely absent in the main thalamic pathway into V1. Similar to hippocampus, spatial modulation in visual cortex strengthens with experience and requires engagement in active behavior. Active navigation in a familiar environment, therefore, determines spatial modulation of visual signals starting in the cortex.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
E Mika Diamanti ◽  
Charu Bai Reddy ◽  
Sylvia Schröder ◽  
Tomaso Muzzu ◽  
Kenneth D Harris ◽  
...  

During navigation, the visual responses of neurons in mouse primary visual cortex (V1) are modulated by the animal’s spatial position. Here we show that this spatial modulation is similarly present across multiple higher visual areas but negligible in the main thalamic pathway into V1. Similar to hippocampus, spatial modulation in visual cortex strengthens with experience and with active behavior. Active navigation in a familiar environment, therefore, enhances the spatial modulation of visual signals starting in the cortex.


2021 ◽  
Author(s):  
Matthijs N. oude Lohuis ◽  
Alexis Cerván Cantón ◽  
Cyriel M. A. Pennartz ◽  
Umberto Olcese

SummaryOver the past few years, the various areas that surround the primary visual cortex in the mouse have been associated with many functions, ranging from higher-order visual processing to decision making. Recently, some studies have shown that higher-order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here we studied how in vivo optogenetic inactivation of two higher-order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher-order visual areas similarly modulate early visual processing. In particular, these areas broaden stimulus responsiveness in the primary visual cortex, by amplifying sensory-evoked responses for stimuli not moving along the orientation preferred by individual neurons. Thus, feedback from higher-order visual areas amplifies V1 responses to non-preferred stimuli, which may aid their detection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tyler D. Marks ◽  
Michael J. Goard

AbstractTo produce consistent sensory perception, neurons must maintain stable representations of sensory input. However, neurons in many regions exhibit progressive drift across days. Longitudinal studies have found stable responses to artificial stimuli across sessions in visual areas, but it is unclear whether this stability extends to naturalistic stimuli. We performed chronic 2-photon imaging of mouse V1 populations to directly compare the representational stability of artificial versus naturalistic visual stimuli over weeks. Responses to gratings were highly stable across sessions. However, neural responses to naturalistic movies exhibited progressive representational drift across sessions. Differential drift was present across cortical layers, in inhibitory interneurons, and could not be explained by differential response strength or higher order stimulus statistics. However, representational drift was accompanied by similar differential changes in local population correlation structure. These results suggest representational stability in V1 is stimulus-dependent and may relate to differences in preexisting circuit architecture of co-tuned neurons.


2019 ◽  
Author(s):  
Guido Meijer ◽  
Pietro Marchesi ◽  
Jorge Mejias ◽  
Jorrit Montijn ◽  
Carien Lansink ◽  
...  

2019 ◽  
Author(s):  
Kevin A. Murgas ◽  
Ashley M. Wilson ◽  
Valerie Michael ◽  
Lindsey L. Glickfeld

AbstractNeurons in the visual system integrate over a wide range of spatial scales. This diversity is thought to enable both local and global computations. To understand how spatial information is encoded across the mouse visual system, we use two-photon imaging to measure receptive fields in primary visual cortex (V1) and three downstream higher visual areas (HVAs): LM (lateromedial), AL (anterolateral) and PM (posteromedial). We find significantly larger receptive field sizes and less surround suppression in PM than in V1 or the other HVAs. Unlike other visual features studied in this system, specialization of spatial integration in PM cannot be explained by specific projections from V1 to the HVAs. Instead, our data suggests that distinct connectivity within PM may support the area’s unique ability to encode global features of the visual scene, whereas V1, LM and AL may be more specialized for processing local features.


2019 ◽  
Vol 121 (6) ◽  
pp. 2202-2214 ◽  
Author(s):  
John P. McClure ◽  
Pierre-Olivier Polack

Multimodal sensory integration facilitates the generation of a unified and coherent perception of the environment. It is now well established that unimodal sensory perceptions, such as vision, are improved in multisensory contexts. Whereas multimodal integration is primarily performed by dedicated multisensory brain regions such as the association cortices or the superior colliculus, recent studies have shown that multisensory interactions also occur in primary sensory cortices. In particular, sounds were shown to modulate the responses of neurons located in layers 2/3 (L2/3) of the mouse primary visual cortex (V1). Yet, the net effect of sound modulation at the V1 population level remained unclear. In the present study, we performed two-photon calcium imaging in awake mice to compare the representation of the orientation and the direction of drifting gratings by V1 L2/3 neurons in unimodal (visual only) or multimodal (audiovisual) conditions. We found that sound modulation depended on the tuning properties (orientation and direction selectivity) and response amplitudes of V1 L2/3 neurons. Sounds potentiated the responses of neurons that were highly tuned to the cue’s orientation and direction but weakly active in the unimodal context, following the principle of inverse effectiveness of multimodal integration. Moreover, sound suppressed the responses of neurons untuned for the orientation and/or the direction of the visual cue. Altogether, sound modulation improved the representation of the orientation and direction of the visual stimulus in V1 L2/3. Namely, visual stimuli presented with auditory stimuli recruited a neuronal population better tuned to the visual stimulus orientation and direction than when presented alone. NEW & NOTEWORTHY The primary visual cortex (V1) receives direct inputs from the primary auditory cortex. Yet, the impact of sounds on visual processing in V1 remains controverted. We show that the modulation by pure tones of V1 visual responses depends on the orientation selectivity, direction selectivity, and response amplitudes of V1 neurons. Hence, audiovisual stimuli recruit a population of V1 neurons better tuned to the orientation and direction of the visual stimulus than unimodal visual stimuli.


Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 64-69 ◽  
Author(s):  
Riccardo Beltramo ◽  
Massimo Scanziani

Visual responses in the cerebral cortex are believed to rely on the geniculate input to the primary visual cortex (V1). Indeed, V1 lesions substantially reduce visual responses throughout the cortex. Visual information enters the cortex also through the superior colliculus (SC), but the function of this input on visual responses in the cortex is less clear. SC lesions affect cortical visual responses less than V1 lesions, and no visual cortical area appears to entirely rely on SC inputs. We show that visual responses in a mouse lateral visual cortical area called the postrhinal cortex are independent of V1 and are abolished upon silencing of the SC. This area outperforms V1 in discriminating moving objects. We thus identify a collicular primary visual cortex that is independent of the geniculo-cortical pathway and is capable of motion discrimination.


2012 ◽  
Vol 108 (9) ◽  
pp. 2363-2372 ◽  
Author(s):  
Mark McAvoy ◽  
Linda Larson-Prior ◽  
Marek Ludwikow ◽  
Dongyang Zhang ◽  
Abraham Z. Snyder ◽  
...  

We investigated the effects of resting state type on blood oxygen level-dependent (BOLD) signal and functional connectivity in two paradigms: participants either alternated between fixation and eyes closed or maintained fixation or eyes closed throughout each scan. The BOLD signal and functional connectivity of lower and higher tiers of the visual cortical hierarchy were found to be differentially modulated during eyes closed versus fixation. Fixation was associated with greater mean BOLD signals in primary visual cortex and lower mean BOLD signals in extrastriate visual areas than periods of eyes closed. In addition, analysis of thalamocortical functional connectivity during scans in which participants maintained fixation showed synchronized BOLD fluctuations between those thalamic nuclei whose mean BOLD signal was systematically modulated during alternating epochs of eyes closed and fixation, primary visual cortex and the attention network, while during eyes closed negatively correlated fluctuations were seen between the same thalamic nuclei and extrastriate visual areas. Finally, in all visual areas the amplitude of spontaneous BOLD fluctuations was greater during eyes closed than during fixation. The dissociation between early and late tiers of visual cortex, which characterizes both mean and functionally connected components of the BOLD signal, may depend on the reorganization of thalamocortical networks. Since dissociated changes in local blood flow also characterize transitions between different stages of sleep and wakefulness (Braun AR, Balkin TJ, Wesenten NJ, Gwadry F, Carson RE, Varga M, Baldwin P, Belenky G, Herscovitch P. Science 279: 91–95, 1998), our results suggest that dissociated endogenous neural activity in primary and extrastriate cortex may represent a general aspect of brain function.


2017 ◽  
Vol 118 (6) ◽  
pp. 3282-3292 ◽  
Author(s):  
Jason M. Samonds ◽  
Berquin D. Feese ◽  
Tai Sing Lee ◽  
Sandra J. Kuhlman

Complex receptive field characteristics, distributed across a population of neurons, are thought to be critical for solving perceptual inference problems that arise during motion and image segmentation. For example, in a class of neurons referred to as “end-stopped,” increasing the length of stimuli outside of the bar-responsive region into the surround suppresses responsiveness. It is unknown whether these properties exist for receptive field surrounds in the mouse. We examined surround modulation in layer 2/3 neurons of the primary visual cortex in mice using two-photon calcium imaging. We found that surround suppression was significantly asymmetric in 17% of the visually responsive neurons examined. Furthermore, the magnitude of asymmetry was correlated with orientation selectivity. Our results demonstrate that neurons in mouse primary visual cortex are differentially sensitive to the addition of elements in the surround and that individual neurons can be described as being either uniformly suppressed by the surround, end-stopped, or side-stopped. NEW & NOTEWORTHY Perception of visual scenes requires active integration of both local and global features to successfully segment objects from the background. Although the underlying circuitry and development of perceptual inference is not well understood, converging evidence indicates that asymmetry and diversity in surround modulation are likely fundamental for these computations. We determined that these key features are present in the mouse. Our results support the mouse as a model to explore the neural basis and development of surround modulation as it relates to perceptual inference.


Sign in / Sign up

Export Citation Format

Share Document