scholarly journals Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences1

2018 ◽  
Author(s):  
Richard Karlsson Linnér ◽  
Pietro Biroli ◽  
Edward Kong ◽  
S Fleur W Meddens ◽  
Robbee Wedow ◽  
...  

AbstractHumans vary substantially in their willingness to take risks. In a combined sample of over one million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. We identified 611 approximately independent genetic loci associated with at least one of our phenotypes, including 124 with general risk tolerance. We report evidence of substantial shared genetic influences across general risk tolerance and risky behaviors: 72 of the 124 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is moderately to strongly genetically correlated ( to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near general-risk-tolerance-associated SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We find no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Josine L. Min ◽  
Rebecca C. Richmond ◽  
Ake T. Lu ◽  
Maria K. Sobczyk ◽  
...  

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


2020 ◽  
Vol 79 (11) ◽  
pp. 1438-1445
Author(s):  
Young-Chang Kwon ◽  
Jiwoo Lim ◽  
So-Young Bang ◽  
Eunji Ha ◽  
Mi Yeong Hwang ◽  
...  

ObjectiveGenome-wide association studies (GWAS) in rheumatoid arthritis (RA) have discovered over 100 RA loci, explaining patient-relevant RA pathogenesis but showing a large fraction of missing heritability. As a continuous effort, we conducted GWAS in a large Korean RA case–control population.MethodsWe newly generated genome-wide variant data in two independent Korean cohorts comprising 4068 RA cases and 36 487 controls, followed by a whole-genome imputation and a meta-analysis of the disease association results in the two cohorts. By integrating publicly available omics data with the GWAS results, a series of bioinformatic analyses were conducted to prioritise the RA-risk genes in RA loci and to dissect biological mechanisms underlying disease associations.ResultsWe identified six new RA-risk loci (SLAMF6, CXCL13, SWAP70, NFKBIA, ZFP36L1 and LINC00158) with pmeta<5×10−8 and consistent disease effect sizes in the two cohorts. A total of 122 genes were prioritised from the 6 novel and 13 replicated RA loci based on physical distance, regulatory variants and chromatin interaction. Bioinformatics analyses highlighted potentially RA-relevant tissues (including immune tissues, lung and small intestine) with tissue-specific expression of RA-associated genes and suggested the immune-related gene sets (such as CD40 pathway, IL-21-mediated pathway and citrullination) and the risk-allele sharing with other diseases.ConclusionThis study identified six new RA-associated loci that contributed to better understanding of the genetic aetiology and biology in RA.


2021 ◽  
Author(s):  
Chun Chieh Fan ◽  
Robert Loughnan ◽  
Diliana Pechva ◽  
Chi-Hua Chen ◽  
Donald Hagler ◽  
...  

It is important to understand the molecular determinants for microstructures of human brain. However, past genome-wide association studies (GWAS) on microstructures of human brain have had limited results due to methodological constraints. Here, we adopt advanced imaging processing methods and multivariate GWAS on two large scale imaging genetic datasets (UK Biobank and Adolescent Brain Cognitive Development study) to identify and validate key genetic association signals. We discovered 503 unique genetic loci that explained more than 50% of the average heritability across imaging features sensitive to tissue compartments. The genome-wide signals are strongly overlapped with neuropsychiatric diseases, cognitive functions, risk tolerance, and immune responses. Our results implicate the shared molecular mechanisms between tissue microstructures of brain and neuropsychiatric outcomes with astrocyte involvement in the early developmental stage.


2019 ◽  
Author(s):  
Michael C. Turchin ◽  
Matthew Stephens

AbstractGenome-wide association studies (GWAS) have now been conducted for hundreds of phenotypes of relevance to human health. Many such GWAS involve multiple closely-related phenotypes collected on the same samples. However, the vast majority of these GWAS have been analyzed using simple univariate analyses, which consider one phenotype at a time. This is de-spite the fact that, at least in simulation experiments, multivariate analyses have been shown to be more powerful at detecting associations. Here, we conduct multivariate association analyses on 13 different publicly-available GWAS datasets that involve multiple closely-related phenotypes. These data include large studies of anthropometric traits (GIANT), plasma lipid traits (GlobalLipids), and red blood cell traits (HaemgenRBC). Our analyses identify many new associations (433 in total across the 13 studies), many of which replicate when follow-up samples are available. Overall, our results demonstrate that multivariate analyses can help make more effective use of data from both existing and future GWAS.1Author SummaryGenome-wide association studies (GWAS) have become a common and powerful tool for identifying significant correlations between markers of genetic variation and physical traits of interest. Often these studies are conducted by comparing genetic variation against single traits one at a time (‘univariate’); however, it has previously been shown that it is possible to increase your power to detect significant associations by comparing genetic variation against multiple traits simultaneously (‘multivariate’). Despite this apparent increase in power though, researchers still rarely conduct multivariate GWAS, even when studies have multiple traits readily available. Here, we reanalyze 13 previously published GWAS using a multivariate method and find >400 additional associations. Our method makes use of univariate GWAS summary statistics and is available as a software package, thus making it accessible to other researchers interested in conducting the same analyses. We also show, using studies that have multiple releases, that our new associations have high rates of replication. Overall, we argue multivariate approaches in GWAS should no longer be overlooked and how, often, there is low-hanging fruit in the form of new associations by running these methods on data already collected.


2021 ◽  
pp. 2100199
Author(s):  
Zhaozhong Zhu ◽  
Jiachen Li ◽  
Jiahui Si ◽  
Baoshan Ma ◽  
Huwenbo Shi ◽  
...  

Lung function is a heritable complex phenotype with obesity being one of its important risk factors. However, the knowledge of their shared genetic basis is limited. Most genome-wide association studies (GWASs) for lung function have been based on European populations, limiting the generalisability across populations. Large-scale lung function GWAS in other populations are lacking.We included 100 285 subjects from China Kadoorie Biobank (CKB). To identify novel loci for lung function, single-trait GWAS were performed on FEV1, FVC, FEV1/FVC in CKB. We then performed genome-wide cross-trait analysis between the lung function and obesity traits (body mass index [BMI], BMI-adjusted waist-to-hip ratio, and BMI-adjusted waist circumference) to investigate the shared genetic effects in CKB. Finally, polygenic risk scores (PRSs) of lung function were developed in CKB and its interaction with BMI's association on lung function were examined. We also conducted cross-trait analysis in parallel with CKB using 457 756 subjects from UK Biobank (UKB) for replication and investigation of ancestry specific effect.We identified 9 genome-wide significant novel loci for FEV1, 6 for FVC and 3 for FEV1/FVC in CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important pathways, including cell proliferation, embryo and tissue development. Mendelian randomisation analysis suggested significant negative causal effect of BMI on FEV1 and on FVC in both CKB and UKB. Lung function PRSs significantly modified the effect of change-in-BMI on change-in-lung function during an average follow-up of 8 years.This large-scale GWAS of lung function identified novel loci and shared genetic etiology between lung function and obesity. Change-in-BMI might affect change-in-lung function differently according to a subject's polygenic background. These findings may open new avenue for the development of molecular-targeted therapies for obesity and lung function improvement.


Sign in / Sign up

Export Citation Format

Share Document