scholarly journals Adrenergic agonist induces rhythmic firing in quiescent cardiac preganglionic neurons in nucleus ambiguous via activation of intrinsic membrane excitability

2018 ◽  
Author(s):  
Isamu Aiba ◽  
Jeffrey L. Noebels

AbstractCholinergic vagal nerves projecting from neurons in the brainstem nucleus ambiguus (NAm) play a predominant role in cardiac parasympathetic pacemaking control. Central adrenergic signaling modulates the tone of this vagal output; however the exact excitability mechanisms are not fully understood. We investigated responses of NAm neurons to adrenergic agonists using in vitro mouse brainstem slices. Preganglionic NAm neurons were identified by Chat-tdtomato fluorescence in young adult transgenic mice and their cardiac projection confirmed by retrograde dye tracing. Juxtacellular recordings detected sparse or absent spontaneous action potentials (AP) in NAm neurons. However bath application of epinephrine or norepinephrine strongly and reversibly activated most NAm neurons regardless of their basal firing rate. Epinephrine was more potent than norepinephrine, and this activation largely depends on α1-adrenoceptors. Interestingly, adrenergic activation of NAm neurons does not require an ionotropic synaptic mechanism, since postsynaptic excitatory or inhibitory receptor blockade did not occlude the excitatory effect, and bath-applied adrenergic agonists did not alter excitatory or inhibitory synaptic transmission. Instead, adrenergic agonists significantly elevated intrinsic membrane excitability to facilitate generation of recurrent action potentials. T-type calcium current (ICaT) and hyperpolarization-activated current (Ih) are involved in this excitation pattern, while not required for spontaneous AP induction by epinephrine. In contrast, pharmacological blockade of persistent sodium current (INaP) significantly inhibited the adrenergic effects. Our results demonstrate that central adrenergic signaling enhances the intrinsic excitability of NAm neurons, and persistent sodium current is required for this effect. This central balancing mechanism may counteract excessive peripheral cardiac excitation during increased sympathetic tone.New & NoteworthyCardiac preganglionic cholinergic neurons in the Nucleus ambiguus (NAm) are responsible for slowing cardiac pacemaking. This study identified that adrenergic agonists can induce rhythmic action potentials in otherwise quiescent cholinergic NAm preganglionic neurons in brainstem slice preparation. The modulatory influence of adrenaline on central parasympathetic outflow may contribute to both physiological and deleterious cardiovascular regulation.

2019 ◽  
Vol 121 (4) ◽  
pp. 1266-1278 ◽  
Author(s):  
Isamu Aiba ◽  
Jeffrey L. Noebels

Cholinergic vagal nerves projecting from neurons in the brain stem nucleus ambiguus (NAm) play a predominant role in cardiac parasympathetic pacemaking control. Central adrenergic signaling modulates the tone of this vagal output; however, the exact excitability mechanisms are not fully understood. We investigated responses of NAm neurons to adrenergic agonists using in vitro mouse brain stem slices. Preganglionic NAm neurons were identified by ChAT-tdTomato fluorescence in young adult transgenic mice, and their cardiac projection was confirmed by retrograde dye tracing. Juxtacellular recordings detected sparse or absent spontaneous action potentials (AP) in NAm neurons. However, bath application of epinephrine or norepinephrine strongly and reversibly activated most NAm neurons regardless of their basal firing rate. Epinephrine was more potent than norepinephrine, and this activation largely depends on α1-adrenoceptors. Interestingly, adrenergic activation of NAm neurons does not require an ionotropic synaptic mechanism, because postsynaptic excitatory or inhibitory receptor blockade did not occlude the excitatory effect, and bath-applied adrenergic agonists did not alter excitatory or inhibitory synaptic transmission. Instead, adrenergic agonists significantly elevated intrinsic membrane excitability to facilitate generation of recurrent action potentials. T-type calcium current and hyperpolarization-activated current are involved in this excitation pattern, although not required for spontaneous AP induction by epinephrine. In contrast, pharmacological blockade of persistent sodium current significantly inhibited the adrenergic effects. Our results demonstrate that central adrenergic signaling enhances the intrinsic excitability of NAm neurons and that persistent sodium current is required for this effect. This central balancing mechanism may counteract excessive peripheral cardiac excitation during increased sympathetic tone. NEW & NOTEWORTHY Cardiac preganglionic cholinergic neurons in the nucleus ambiguus (NAm) are responsible for slowing cardiac pacemaking. This study identified that adrenergic agonists can induce rhythmic action potentials in otherwise quiescent cholinergic NAm preganglionic neurons in brain stem slice preparation. The modulatory influence of adrenaline on central parasympathetic outflow may contribute to both physiological and deleterious cardiovascular regulation.


2020 ◽  
pp. 153575972097397
Author(s):  
Eric R. Wengert ◽  
Manoj K. Patel

Voltage-gated sodium channels (VGSCs) are foundational to excitable cell function: Their coordinated passage of sodium ions into the cell is critical for the generation and propagation of action potentials throughout the nervous system. The classical paradigm of action potential physiology states that sodium passes through the membrane only transiently (1-2 milliseconds), before the channels inactivate and cease to conduct sodium ions. However, in reality, a small fraction of the total sodium current (1%-2%) remains at steady state despite prolonged depolarization. While this persistent sodium current (INaP) contributes to normal physiological functioning of neurons, accumulating evidence indicates a particularly pathogenic role for an elevated INaP in epilepsy (reviewed previously 1 ). Due to significant advances over the past decade of epilepsy research concerning the importance of INaP in sodium channelopathies, this review seeks to summarize recent evidence and highlight promising novel anti-seizure medication strategies through preferentially targeting INaP.


2003 ◽  
Vol 90 (3) ◽  
pp. 1635-1642 ◽  
Author(s):  
Ilya A. Rybak ◽  
Krzysztof Ptak ◽  
Natalia A. Shevtsova ◽  
Donald R. McCrimmon

Rapidly inactivating and persistent sodium currents have been characterized in acutely dissociated neurons from the area of rostroventrolateral medulla that included the pre-Bötzinger Complex. As demonstrated in many studies in vitro, this area can generate endogenous rhythmic bursting activity. Experiments were performed on neonate and young rats (P1-15). Neurons were investigated using the whole cell voltage-clamp technique. Standard activation and inactivation protocols were used to characterize the steady-state and kinetic properties of the rapidly inactivating sodium current. Slow depolarizing ramp protocols were used to characterize the noninactivating sodium current. The “window” component of the rapidly inactivating sodium current was calculated using mathematical modeling. The persistent sodium current was revealed by subtraction of the window current from the total noninactivating sodium current. Our results provide evidence of the presence of persistent sodium currents in neurons of the rat rostroventrolateral medulla and determine voltage-gated characteristics of activation and inactivation of rapidly inactivating and persistent sodium channels in these neurons.


2008 ◽  
Vol 73 (6) ◽  
pp. 1622-1631 ◽  
Author(s):  
Caroline Pinet ◽  
Vincent Algalarrondo ◽  
Sylvie Sablayrolles ◽  
Bruno Le Grand ◽  
Christophe Pignier ◽  
...  

1979 ◽  
Vol 57 (10) ◽  
pp. 1073-1081 ◽  
Author(s):  
Urs Gerber ◽  
Canio Polosa

Repetitive electrical stimulation of afferent fibers in the superior laryngeal nerve (SLN) evoked depressant or excitatory effects on sympathetic preganglionic neurons of the cervical trunk in Nembutal-anesthetized, paralyzed, artificially ventilated cats. The depressant effect, which consisted of suppression of the inspiration-synchronous discharge of units with such firing pattern, was obtained at low strength and frequency of stimulation (e.g. 600 mV, 30 Hz) and was absent at end-tidal CO2 values below threshold for phrenic nerve activity. The excitatory effect required higher intensity and frequency of stimulation and was CO2 independent. The depressant effect on sympathetic preganglionic neurons with inspiratory firing pattern seemed a replica of the inspiration-inhibitory effect observed on phrenic motoneurons. Hence, it could be attributed to the known inhibition by the SLN of central inspiratory activity, if it is assumed that this is a common driver for phrenic motoneurons and some sympathetic preganglionic neurons. The excitatory effect, on the other hand, appears to be due to connections of SLN afferents with sympathetic preganglionic neurons, independent of the respiratory center.


2011 ◽  
Vol 100 (3) ◽  
pp. 421a
Author(s):  
Hai Huang ◽  
Silvia G. Priori ◽  
Carlo Napolitano ◽  
Michael E. O’Leary ◽  
Mohamed Chahine

1991 ◽  
Vol 66 (3) ◽  
pp. 744-761 ◽  
Author(s):  
S. M. Johnson ◽  
P. A. Getting

1. The purpose of this study was to determine the electrophysiological properties of neurons within the region of the nucleus ambiguus (NA), an area that contains the ventral respiratory group. By the use of an in vitro brain stem slice preparation, intracellular recordings from neurons in this region (to be referred to as NA neurons, n = 235) revealed the following properties: postinhibitory rebound (PIR), delayed excitation (DE), adaptation, and posttetanic hyperpolarization (PTH). NA neurons were separated into three groups on the basis of their expression of PIR and DE: PIR cells (58%), DE cells (31%), and Non cells (10%). Non cells expressed neither PIR nor DE and no cells expressed both PIR and DE. 2. PIR was a transient depolarization that produced a single action potential or a burst of action potentials when the cell was released from hyperpolarization. In the presence of tetrodotoxin (TTX), the maximum magnitude of PIR was 7-12 mV. Under voltage-clamp conditions, hyperpolarizing voltage steps elicited a small inward current during the hyperpolarization and a small inward tail current on release from hyperpolarization. These currents, which mediate PIR, were most likely due to Q-current because they were blocked with extracellular cesium and were insensitive to barium. 3. DE was a delay in the onset of action potential firing when cells were hyperpolarized before application of depolarizing current. When cells were hyperpolarized to -90 mV for greater than or equal to 300 ms, maximum delays ranged from 150 to 450 ms. The transient outward current underlying DE was presumed to be A-current because of the current's activation and inactivation characteristics and its elimination by 4-aminopyridine (4-AP). 4. Adaptation was examined by applying depolarizing current for 2.0 s and measuring the frequency of evoked action potentials. Although there was a large degree of variability in the degree of adaptation, PIR cells tended to express less adaptation than DE and Non cells. Nearly three-fourths of all NA neurons adapted rapidly (i.e., 50% adaptation in less than 200 ms), but PIR cells tended to adapt faster than DE and Non cells. PTH after a train of action potentials was relatively rare and occurred more often in DE cells (43%) and Non cells (33%) than in PIR cells (13%). PTH had a magnitude of up to 18 mV and time constants that reflected the presence of one (1.7 +/- 1.4 s, mean +/- SD) or two components (0.28 +/- 0.13 and 4.1 +/- 2.2 s).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document