scholarly journals Auxin is not asymmetrically distributed in initiating Arabidopsis leaves

2018 ◽  
Author(s):  
Neha Bhatia ◽  
Marcus G. Heisler

AbstractIt has been proposed that asymmetric auxin levels within initiating leaves help establish leaf polarity, based in part on observations of the DII auxin sensor. Here we show that the mDII control sensor also exhibits an asymmetry and that according to the ratio-metric auxin sensor R2D2, no obvious asymmetry in auxin exists. Together with other recent findings, our results argue against the importance of auxin asymmetry in establishing leaf polarity.


Planta ◽  
2004 ◽  
Vol 219 (2) ◽  
pp. 270-276 ◽  
Author(s):  
Yiping Qi ◽  
Yue Sun ◽  
Lin Xu ◽  
Yuquan Xu ◽  
Hai Huang
Keyword(s):  


2006 ◽  
Vol 34 (3) ◽  
pp. 335-339 ◽  
Author(s):  
F.R. Maxfield ◽  
M. Mondal

The pathways involved in the intracellular transport and distribution of lipids in general, and sterols in particular, are poorly understood. Cholesterol plays a major role in modulating membrane bilayer structure and important cellular functions, including signal transduction and membrane trafficking. Both the overall cholesterol content of a cell, as well as its distribution in specific organellar membranes are stringently regulated. Several diseases, many of which are incurable at present, have been characterized as results of impaired cholesterol transport and/or storage in the cells. Despite their importance, many fundamental aspects of intracellular sterol transport and distribution are not well understood. For instance, the relative roles of vesicular and non-vesicular transport of cholesterol have not yet been fully determined, nor are the non-vesicular transport mechanisms well characterized. Similarly, whether cholesterol is asymmetrically distributed between the two leaflets of biological membranes, and if so, how this asymmetry is maintained, is poorly understood. In this review, we present a summary of the current understanding of these aspects of intracellular trafficking and distribution of lipids, and more specifically, of sterols.



2017 ◽  
Author(s):  
Valentina Corradi ◽  
Eduardo Mendez-Villuendas ◽  
Helgi I. Ingólfsson ◽  
Ruo-Xu Gu ◽  
Iwona Siuda ◽  
...  

ABSTRACTCell membranes contain hundreds of different proteins and lipids in an asymmetric arrangement. Understanding the lateral organization principles of these complex mixtures is essential for life and health. However, our current understanding of the detailed organization of cell membranes remains rather elusive, owing to the lack of experimental methods suitable for studying these fluctuating nanoscale assemblies of lipids and proteins with the required spatiotemporal resolution. Here, we use molecular dynamics simulations to characterize the lipid environment of ten membrane proteins. To provide a realistic lipid environment, the proteins are embedded in a model plasma membrane, where more than 60 lipid species are represented, asymmetrically distributed between leaflets. The simulations detail how each protein modulates its local lipid environment through local lipid composition, thickness, curvature and lipid dynamics. Our results provide a molecular glimpse of the complexity of lipid-protein interactions, with potentially far reaching implications for the overall organization of the cell membrane.



2021 ◽  
Vol 22 (19) ◽  
pp. 10267
Author(s):  
Yiqing Zhang ◽  
Heyang Wei ◽  
Wenyu Wen

Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.



2017 ◽  
Author(s):  
Duvernoy Marie-Cécilia ◽  
Mora Thierry ◽  
Ardré Maxime ◽  
Croquette Vincent ◽  
Bensimon David ◽  
...  

Bacterial biofilms are spatially structured communities, within which bacteria can differentiate depending on environmental conditions. During biofilm formation, bacteria attach to a surface and use cell-cell contacts to convey the signals required for the coordination of biofilm morphogenesis. How bacteria can maintain both substrate adhesions and cell-cell contacts during the expansion of a microcolony is still a critical yet poorly understood phenomenon. Here, we describe the development of time-resolved methods to measure substrate adhesion at the single cell level during the formation of E. coli and P. aeruginosa microcolonies. We show that bacterial adhesion is asymmetrically distributed along the cell body. Higher adhesion forces at old poles put the daughter cells under tension and force them to slide along each other. These rearrangements increase cell-cell contacts and the circularity of the colony. We propose a mechanical model based on the microscopic details of adhesive links, which recapitulates microcolony morphogenesis and quantitatively predicts bacterial adhesion from simple time lapse movies. These results explain how the distribution of adhesion forces at the subcellular level directs the shape of bacterial colonies, which ultimately dictates the circulation of secreted signals.



2021 ◽  
Author(s):  
Max Gass ◽  
Sarah Borkowsky ◽  
Marie-Luise Lotz ◽  
Rita Schroeter ◽  
Pavel Nedvetsky ◽  
...  

Drosophila nephrocytes are an emerging model system for mammalian podocytes and podocyte-associated diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-Kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-Kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.



1978 ◽  
Vol 76 (3) ◽  
pp. 652-674 ◽  
Author(s):  
I B Täljedal

Pancreatic islets, or suspensions of islet cells, from noninbred ob/ob-mice were incubated with chlorotetracycline and analyzed for Ca2+-dependent fluorescence in a microscope. Unless logarithmically transformed, signals from islets were asymmetrically distributed with unstable variance. Signals from cells pelleted in glass capillaries were more homogeneous and depended linearly on the thickness of the sample. The effect of sample thickness and a significant enhancement of fluorescence by alloxan suggest that beta-cells were involved in producing the signal from whole islets. The signal from dispersed cells was probably diagnostic of Ca2+ in beta-cell plasma membranes because it was suppressed by La3+ and had a spectrum indicative of an apolar micromilieu; fluorescent staining of cell surfaces was directly seen at high magnification. Fluorescence from cells was enhanced by 0.5-10 mM Ca2+ in a dose-dependent manner, whereas less than 0.5 mM Ca2+ saturated the probe alone in methanol. The signal from islets or dispersed cells was suppressed by 5 mM theophylline; that from cells was also suppressed by 0.5 mM 3-isobutyl-1-methylxanthine, 1.2 or 15 mM Mg2+, 3-20 mM D-glucose, and, to a lesser extent, 20 mM 3-O-methyl-D-glucose. D-glucose was more inhibitory in the absence than in the presence of Mg2+, as if Mg2+ and D-glucose influenced the same Ca2+ pool. L-glucose, D-mannopheptulose, or diazoxide had no noticeable effect and 20 mM bicarbonate was stimulatory. The results suggest that microscopy of chlorotetracycline-stained cells can aid in characterizing calcium pools of importance for secretion. Initiation of insulin release may be associated with an increas



Sign in / Sign up

Export Citation Format

Share Document