scholarly journals Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis

2017 ◽  
Author(s):  
Duvernoy Marie-Cécilia ◽  
Mora Thierry ◽  
Ardré Maxime ◽  
Croquette Vincent ◽  
Bensimon David ◽  
...  

Bacterial biofilms are spatially structured communities, within which bacteria can differentiate depending on environmental conditions. During biofilm formation, bacteria attach to a surface and use cell-cell contacts to convey the signals required for the coordination of biofilm morphogenesis. How bacteria can maintain both substrate adhesions and cell-cell contacts during the expansion of a microcolony is still a critical yet poorly understood phenomenon. Here, we describe the development of time-resolved methods to measure substrate adhesion at the single cell level during the formation of E. coli and P. aeruginosa microcolonies. We show that bacterial adhesion is asymmetrically distributed along the cell body. Higher adhesion forces at old poles put the daughter cells under tension and force them to slide along each other. These rearrangements increase cell-cell contacts and the circularity of the colony. We propose a mechanical model based on the microscopic details of adhesive links, which recapitulates microcolony morphogenesis and quantitatively predicts bacterial adhesion from simple time lapse movies. These results explain how the distribution of adhesion forces at the subcellular level directs the shape of bacterial colonies, which ultimately dictates the circulation of secreted signals.


2014 ◽  
Vol 11 (100) ◽  
pp. 20140684 ◽  
Author(s):  
Chenlu Wang ◽  
Sagar Chowdhury ◽  
Meghan Driscoll ◽  
Carole A. Parent ◽  
S. K. Gupta ◽  
...  

Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells ( Dictyostelium discoideum ), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact.



1996 ◽  
Vol 135 (6) ◽  
pp. 1899-1911 ◽  
Author(s):  
C L Adams ◽  
W J Nelson ◽  
S J Smith

Epithelial cell-cell adhesion requires interactions between opposing extracellular domains of E-cadherin, and among the cytoplasmic domain of E-cadherin, catenins, and actin cytoskeleton. Little is known about how the cadherin-catenin-actin complex is assembled upon cell-cell contact, or how these complexes initiate and strengthen adhesion. We have used time-lapse differential interference contrast (DIC) imaging to observe the development of cell-cell contacts, and quantitative retrospective immunocytochemistry to measure recruitment of proteins to those contacts. We show that E-cadherin, alpha-catenin, and beta-catenin, but not plakoglobin, coassemble into Triton X-100 insoluble (TX-insoluble) structures at cell-cell contacts with kinetics similar to those for strengthening of E-cadherin-mediated cell adhesion (Angres, B., A. Barth, and W.J. Nelson. 1996. J. Cell Biol. 134:549-557). TX-insoluble E-cadherin, alpha-catenin, and beta-catenin colocalize along cell-cell contacts in spatially discrete micro-domains which we designate "puncta," and the relative amounts of each protein in each punctum increase proportionally. As the length of the contact increases, the number of puncta increases proportionally along the contact and each punctum is associated with a bundle of actin filaments. These results indicate that localized clustering of E-cadherin/catenin complexes into puncta and their association with actin is involved in initiating cell contacts. Subsequently, the spatial ordering of additional puncta along the contact may be involved in zippering membranes together, resulting in rapid strengthening of adhesion.



1990 ◽  
Vol 110 (4) ◽  
pp. 1387-1404 ◽  
Author(s):  
W G Carter ◽  
E A Wayner ◽  
T S Bouchard ◽  
P Kaur

We have examined cultures of neonatal human foreskin keratinocytes (HFKs) to determine the ligands and functions of integrins alpha 2 beta 1, and alpha 3 beta 1 in normal epidermal stratification and adhesion to the basement membrane zone (BMZ) in skin. We used three assay systems, HFK adhesion to purified extracellular matrix (ECM) ligands and endogenous secreted ECM, localization of integrins in focal adhesions (FAs), and inhibition of HFK adhesion with mAbs to conclude: (a) A new anti-alpha 3 beta 1 mAb, P1F2, localized alpha 3 beta 1 in FAs on purified laminin greater than fibronectin/collagen, indicating that laminin was the best exogeneous ligand for alpha 3 beta 1. However, in long term culture, alpha 3 beta 1 preferentially codistributed in and around FAs with secreted laminin-containing ECM, in preference to exogenous laminin. Anti-alpha 3 beta 1, mAb P1B5, detached prolonged cultures of HFKs from culture plates or from partially purified HFK ECM indicating that interaction of alpha 3 beta 1 with the secreted laminin-containing ECM was primarily responsible for HFK adhesion in long term culture. (b) In FA assays, alpha 2 beta 1 localized in FAs conincident with initial HFK adhesion to exogenous collagen, but not laminin or fibronectin. However, in inhibition assays, anti-alpha 2 beta 1 inhibited initial HFK adhesion to both laminin and collagen. Thus, alpha 2 beta 1 contributes to initial HFK adhesion to laminin but alpha 3 beta 1 is primarily responsible for long-term HFK adhesion to secreted laminin-containing ECM. (c) Serum or Ca2(+)-induced aggregation of HFKs resulted in relocation of alpha 2 beta 1 and alpha 3 beta 1 from FAs to cell-cell contacts. Further, cell-cell adhesion was inhibited by anti-alpha 3 beta 1 (P1B5) and a new anti-beta 1 mAb (P4C10). Thus, interaction of alpha 3 beta 1 with either ECM or membrane coreceptors at cell-cell contacts may facilitate Ca2(+)-induced HFK aggregation. (d) It is suggested that interaction of alpha 3 beta 1 with a secreted, laminin-containing ECM in cultured HFKs, duplicates the role of alpha 3 beta 1 in basal cell adhesion to the BMZ in skin. Further, relocation of alpha 2 beta 1 and alpha 3 beta 1 to cell-cell contacts may result in detachment of cells from the BMZ and increased cell-cell adhesion in the suprabasal cells contributing to stratification of the skin.



1990 ◽  
Vol 110 (3) ◽  
pp. 803-815 ◽  
Author(s):  
H Larjava ◽  
J Peltonen ◽  
S K Akiyama ◽  
S S Yamada ◽  
H R Gralnick ◽  
...  

We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.



2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ana Sancho ◽  
Ine Vandersmissen ◽  
Sander Craps ◽  
Aernout Luttun ◽  
Jürgen Groll


1988 ◽  
Vol 90 (1) ◽  
pp. 79-92
Author(s):  
M. Maurice ◽  
E. Rogier ◽  
D. Cassio ◽  
G. Feldmann

In vivo, proteins of the hepatocyte plasma membrane are asymmetrically distributed, making it possible to distinguish a sinusoidal, a lateral and a canalicular domain. The conditions that determine hepatocyte plasma membrane polarity have been investigated in vitro, using three monoclonal antibodies directed against integral membrane proteins, which were characteristic of each domain. The localization of the three antigens was studied by immunolabelling of hepatocytes isolated from adult rat liver, primary monolayer cultures and rat hepatoma cell lines. When hepatocytes were isolated, the three antigens spread over the entire cell surface. The lateral antigen redistributed at lateral sites as soon as cell-cell contacts were established, 4 h after the beginning of primary culture. The sinusoidal and canalicular antigens became asymmetrically distributed after 48 h of primary culture, after the formation of bile canaliculus-like structures. In most of the hepatoma lines studied, the three antigens were expressed, except that the canalicular antigen was fully expressed in differentiated clones only. The lateral antigen was always distributed on the contiguous membranes of clustered hepatoma cells, whereas the sinusoidal and canalicular antigens were localized on the entire plasma membrane. However, in a few cells of some clones in which bile canaliculus-like structures were observed, the canalicular membranes were strongly labelled only with the canalicular antibody. In the absence of bile canalicular formations, in both primary culture and cell lines, the canalicular antigen and, to a lesser extent, the sinusoidal antigen accumulated in the Golgi apparatus, suggesting that their transport to the cell surface was altered in the absence of a bile pole. These results show that in hepatic cells, polarization of the plasma membrane is determined by: (1) the existence of cell-cell contacts, which is correlated with the domain-specific localization of the lateral antigen; and (2) the formation of bile canaliculi, which would trigger the development of an asymmetrical distribution of the sinusoidal and canalicular antigens.



2000 ◽  
Vol 11 (7) ◽  
pp. 2471-2483 ◽  
Author(s):  
Clare M. Waterman-Storer ◽  
Wendy C. Salmon ◽  
E.D. Salmon

To test how cell–cell contacts regulate microtubule (MT) and actin cytoskeletal dynamics, we examined dynamics in cells that were contacted on all sides with neighboring cells in an epithelial cell sheet that was undergoing migration as a wound-healing response. Dynamics were recorded using time-lapse digital fluorescence microscopy of microinjected, labeled tubulin and actin. In fully contacted cells, most MT plus ends were quiescent; exhibiting only brief excursions of growth and shortening and spending 87.4% of their time in pause. This contrasts MTs in the lamella of migrating cells at the noncontacted leading edge of the sheet in which MTs exhibit dynamic instability. In the contacted rear and side edges of these migrating cells, a majority of MTs were also quiescent, indicating that cell–cell contacts may locally regulate MT dynamics. Using photoactivation of fluorescence techniques to mark MTs, we found that MTs in fully contacted cells did not undergo retrograde flow toward the cell center, such as occurs at the leading edge of motile cells. Time-lapse fluorescent speckle microscopy of fluorescently labeled actin in fully contacted cells revealed that actin did not flow rearward as occurs in the leading edge lamella of migrating cells. To determine if MTs were required for the maintenance of cell–cell contacts, cells were treated with nocodazole to inhibit MTs. After 1–2 h in either 10 μM or 100 nM nocodazole, breakage of cell–cell contacts occurred, indicating that MT growth is required for maintenance of cell–cell contacts. Analysis of fixed cells indicated that during nocodazole treatment, actin became reduced in adherens junctions, and junction proteins α- and β-catenin were lost from adherens junctions as cell–cell contacts were broken. These results indicate that a MT plus end capping protein is regulated by cell–cell contact, and in turn, that MT growth regulates the maintenance of adherens junctions contacts in epithelia.



2021 ◽  
Author(s):  
Siavash Monfared ◽  
Guruswami Ravichandran ◽  
José E. Andrade ◽  
Amin Doostmohammadi

Cell layers eliminate unwanted cells through the extrusion process, which underlines healthy versus flawed tissue behaviors. Although several biochemical pathways have been identified, the underlying mechanical basis including the forces involved in cellular extrusion remain largely unexplored. Utilizing a phase-field model of a three-dimensional cell layer, we study the interplay of cell extrusion with cell-cell and cell-substrate interactions, in a monolayer. Independent tuning of cell-cell versus cell-substrate adhesion forces in the model reveals that a higher cell-substrate adhesion leads to a lower number of total extrusion events. We find extrusion events to be linked to both half-integer topological defects in the orientation field of the cells and to five-fold disclinations in cellular arrangements. We also show that increasing the relative cell-cell adhesion forces translates into a higher likelihood for an extrusion event to be associated with a five-fold disclination and a weaker correlation with +1/2 topological defects. We unify our findings by accessing mechanical stress fields: an extrusion event acts as a mechanism to relieve localized stress concentration.



2006 ◽  
Vol 44 (01) ◽  
Author(s):  
BK Straub ◽  
J Boda-Heggemann ◽  
UF Pape ◽  
C Grund ◽  
E Specht-Delius ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document