scholarly journals Design and analysis of a Proportional-Integral-Derivative controller with biological molecules

2018 ◽  
Author(s):  
Michael Chevalier ◽  
Mariana Gómez-Schiavon ◽  
Andrew Ng ◽  
Hana El-Samad

SummaryThe ability of cells to regulate their function through feedback control is a fundamental underpinning of life. The capability to engineer de novo feedback control with biological molecules is ushering in an era of robust functionality for many applications in biotechnology and medicine. To fulfill their potential, feedback control strategies implemented with biological molecules need to be generalizable, modular and operationally predictable. Proportional-Integral-Derivative (PID) control fulfills this role for technological systems and is a commonly used strategy in engineering. Integral feedback control allows a system to return to an invariant steady-state value after step disturbances, hence enabling its robust operation. Proportional and derivative feedback control used with integral control help sculpt the dynamics of the return to steady-state following perturbation. Recently, a biomolecular implementation of integral control was proposed based on an antithetic motif in which two molecules interact stoichiometrically to annihilate each other’s function. In this work, we report how proportional and derivative implementations can be layered on top of this integral architecture to achieve a biochemical PID control design. We illustrate through computational and analytical treatments that the addition of proportional and derivative control improves performance, and discuss practical biomolecular implementations of these control strategies.

Author(s):  
Gyan Wrat ◽  
Prabhat Ranjan ◽  
Mohit Bhola ◽  
Santosh Kumar Mishra ◽  
J Das

The role of hydraulic systems is quite evident especially in the case of heavy machineries employed in industries, where the utilisation of high forces amid large stiffness is the prerequisite. Nevertheless, there has been substantial effort put forward in the development of advanced control strategies which finally addressed the issue of the position control. Proportional–integral–derivative control strategy happens to be one among them, which is a versatile and widely renowned approach involved in the position control in this study. Although, it is quite frequently observed that the hydraulic actuation system possesses strong nonlinearities. In this article, two different actuator position control strategies, that is, swash plate control of main pump and speed control strategy of prime mover are compared. In swash plate control strategy, the proportional–integral–derivative controller adjusts the swash plate of main pump through servo mechanism, whereas in the speed control strategy, the proportional–integral–derivative controller adjusts the speed of the electric motor through variable-frequency drive. For this purpose, two MATLAB-Simulink models are developed and validated experimentally. It is found that swash plate control strategy has better dynamic and control performance than the speed control strategy catering same position demand of the linear actuator.


JURNAL ELTEK ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 81
Author(s):  
Muchlis Dwi Ardiansyah ◽  
Fatkhur Rohman

Pemanfaatan teknologi alternatif dalam bidang otomotif maupun otomasi industri menggunakan motor Brushless Direct Current (BLDC) sudah banyak digunakan karena memiliki kelebihan dibanding dengan jenis mesin penggerak bertenaga elektrik lainnya. Namun motor BLDC masih memiliki beberapa kekurangan ketika menerima beban sehingga menyebabkan penurunan kecepatan putaran pada motor BLDC. Tujuan penelitian ini adalah untuk merancang dan mengaplikasikan sistem kendali kecepatan motor BLDC dengan kontrol Proportional Integral Derivative (PID) dan menentukan nilai parameter untuk mendapatkan persentase error steady state terkecil pada variasi  kecepatan dan beban motor BLDC. Metode pengambilan data diambil dengan cara memasukkan nilai parameter secara trial and error. Sebagai simulasi beban, motor BLDC dihubungkan dengan generator yang diberi beban berupa lampu yang divariasikan. Hasil pengujian mendapatkan pemodelan blok diagram PID dengan Matlab Simulink. Hasil parameter kontrol PID diperoleh nilai Kp = 1,5; Ki = 10,5 dan Kd = 0,04. Dengan nilai parameter tersebut motor BLDC dapat mempertahankan nilai set point dengan kestabilan yang tinggi (error steady state rendah).   The usage of alternative technology in the field of automotive and industrial automation using Brushless Direct Current (BLDC) has been widely used because it has advantages compared to other types of electric-powered drive engines. But the BLDC motor still has some disadvantages when receiving a load that causes a decrease in rotation speed on the BLDC motor. The purpose of the study is to design and apply a BLDC motor speed control system with a Proportional Integral Derivative (PID) control and determine the parameter value to obtain the smallest error steady state percentage at a speed variation and motor load the BLDC. The method of retrieving data was taken by entering parameter values by trial and error. As a load simulation, the BLDC motor was connected to a generator that was given the load in the form of a varied lamp. The test results gets the PID block diagram modeling with Matlab Simulink. The results of the PID control parameter are Kp = 1.5; Ki = 10.5 and Kd = 0.04. With these parameter values, the BLDC motor can maintain the setpoint value with high stability (low steady-state error).


Author(s):  
Lina Hao ◽  
Jinhai Gao ◽  
Hongpeng Che

In the recent past, it has been observed that flexure-based microposition stages with a large workspace and high motion precision are gaining popularity for performing practical micromanipulation tasks. Thus, a piezoactuated flexible two-degrees-of-freedom micromanipulator integrated with a pair of displacement amplifiers is developed. To enhance the practical positioning performance of the micromanipulator, this paper proposes a feed-forward frictional-order proportional–integral–derivative based feedback control approach to eliminate the undesired resonant mode of a piezoactuated microposition stage to satisfy the accuracy of the system. The control approach is composed of the integration inverse feed-forward compensator, the feedback controller, and the frictional-order proportional–integral–derivative controller. The integration inverse feed-forward compensator with an extended unparallel Prandtl–Ishlinskii model is introduced for addressing the nonlinearity of the piezoactuated microposition stage, leading to an approximately linear system. When all the roots of the system characteristic equation are negative real numbers or have negative real parts, the feedback controller is guaranteed to have tracking stability. Next, a frictional-order proportional–integral–derivative controller is designed to enhance the tracking performance of the microposition stage. Finally, comparative experiments with the conventional proportional–integral–derivative controller are performed, revealing that the practical positioning performance has been increased by nearly 35%. The experimental results demonstrate that the performance with the frictional-order proportional–integral–derivative+feedback controller is improved significantly.


2019 ◽  
Vol 7 (2) ◽  
pp. 152
Author(s):  
Muhammad Muhammad ◽  
Azizi Maharani ◽  
Maulinda Leni

Absorbsi merupakan salah satu cara untuk memisahkan atau mengurangi suatu konsituen dalam fasa gas dengan menggunakan solvent atau penyerap tertentu secara relative yang dapat melarutkan atau menyerap konsituen yang diinginkan. Tujuan dari penelitian ini yaitu untuk menentukan nilai Kc, Ti dan Td terbaik pada kontrol PID DEA absorber Perta Arun Gas. Sistem kontrol Proportional, Integral and Derivative (PID) merupakan controller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tersebut (Feed Back). Response Surface Methodology (RSM) atau metode permukaan respon adalah sekumpulan metode-metode matematika dan statistika yang digunakan dalam pemodelan dan analisis, yang bertujuan untuk melihat pengaruh beberapa variabel kuantitatif terhadap suatu variabel respon dan untuk mengoptimalkan variabel respon tersebut. Adapun metodologi dari penelitian ini adalah membuat model steady state DEA absorber menjadi model dynamic, lalu membuat model kontrol PID, setelah itu melakukan tuning terhadap kontrol PID dan melakukan pengujian terhadap kontrol PID dengan melakukan gangguan pada PV. Hasil dari pengaplikasian sistem kontrol PID maka mendapatkan waktu tercepat dengan nilai Kc = Kc = 0,1, Ti = 0,01, dan Td = 0,00001 dengan waktu 0,510 menit. Kata kunci: Absorbsi, PID, Present Value, Controller


Cell Systems ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 338-353.e10 ◽  
Author(s):  
Michael Chevalier ◽  
Mariana Gómez-Schiavon ◽  
Andrew H. Ng ◽  
Hana El-Samad

2017 ◽  
Vol 29 (5) ◽  
pp. 830-844 ◽  
Author(s):  
Abbas-Ali Zamani ◽  
Saeed Tavakoli ◽  
Sadegh Etedali ◽  
Jafar Sadeghi

The current semi-active or even active control strategies have been developed to address a few drawbacks, such as unwanted large displacements created at the base level and system deficiency in adaptation to different types of seismic excitations, in the base isolation systems. In this article, two control strategies, multi-objective modified clipped optimal and adaptive fractional order fuzzy proportional–integral–derivative, are proposed for semi-active control of a smart base-isolated structure equipped with a magnetorheological damper. The main objective is to reduce the displacement of isolation system without allowing significant increase in the acceleration of superstructure for both far-field and near-field earthquake excitations. Using proper fitness functions, the weighting matrices of the multi-objective modified clipped optimal controller are tuned using multi-objective optimization. Then, the parameters of the fractional order fuzzy proportional–integral–derivative controller are obtained. Next, the fuzzy rule weights of the fractional order fuzzy proportional–integral–derivative controller are updated online based on the values of ground motion and structural responses using an adaptive strategy. For comparison, two control cases in which the magnetorheological damper is in passive mode, passive-off and passive-on, are considered. Numerical simulations show that the proposed adaptive fractional order fuzzy proportional–integral–derivative controller better mitigates the seismic responses of a base-isolated structure excited by a range of real-data earthquakes.


2018 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Galih Irfan Firdaus

Roket merupakan sebuah peluru kendali atau suatu kendaraan terbang yang mendapatkan dorongan melalui reaksi roket secara cepat dengan bahan fluida dari keluaran mesin roket. Sistem Kendali Sirip Roket berbasis Mikrokontroller ATmega8 berguna untuk mengendalikan sirip roket khususnya bagian aileron.  Dibutuhkan komponen – komponen pendukung berupa Sensor Accelerometer, Sensor Gyroscope, ATmega8 dan Motor Servo. Alat pengendali sirip roket ini dapat digunakan untuk mengendalikan sirip roket bagian aileron pada saat posisi roket tidak stabil atau terjadi gerakan naik turun pada saat setelah diluncurkan, sehingga dapat menghasilkan penerbangan yang maksimal dalam mencapai sasaran.Perancangan yang  digunakan adalah jenis pengendalian dengan kontrol PID. PID (Proportional Integral Derivative controller) merupakan kontroller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Pengontrol PID adalah pengontrol konvensional yang banyak dipakai dalam dunia industri. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D. Pemilihan konstanta Kp, Ki dan Kd akan mengakibatkan penonjolan sifat dari masing-masing elemen. Dalam perancangan sebuah sistem kendali menggunakan kontroller PID pada motor servo yang diharapkan mampu menggerakkan sirip naik dan sirip turun pada roket sehingga mampu menjaga kestabilan roket saat diluncurkan. Prosentase error pada proyek akhir ini adalah 0,5 %.Roket merupakan sebuah peluru kendali atau suatu kendaraan terbang yang mendapatkan dorongan melalui reaksi roket secara cepat dengan bahan fluida dari keluaran mesin roket. Sistem Kendali Sirip Roket berbasis Mikrokontroller ATmega8 berguna untuk mengendalikan sirip roket khususnya bagian aileron.  Dibutuhkan komponen – komponen pendukung berupa Sensor Accelerometer, Sensor Gyroscope, ATmega8 dan Motor Servo. Alat pengendali sirip roket ini dapat digunakan untuk mengendalikan sirip roket bagian aileron pada saat posisi roket tidak stabil atau terjadi gerakan naik turun pada saat setelah diluncurkan, sehingga dapat menghasilkan penerbangan yang maksimal dalam mencapai sasaran.Perancangan yang  digunakan adalah jenis pengendalian dengan kontrol PID. PID (Proportional Integral Derivative controller) merupakan kontroller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Pengontrol PID adalah pengontrol konvensional yang banyak dipakai dalam dunia industri. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D. Pemilihan konstanta Kp, Ki dan Kd akan mengakibatkan penonjolan sifat dari masing-masing elemen. Dalam perancangan sebuah sistem kendali menggunakan kontroller PID pada motor servo yang diharapkan mampu menggerakkan sirip naik dan sirip turun pada roket sehingga mampu menjaga kestabilan roket saat diluncurkan. Prosentase error pada proyek akhir ini adalah 0,5 %.


Sign in / Sign up

Export Citation Format

Share Document