scholarly journals Photoacoustic imaging for the prediction and assessment of response to radiotherapy in vivo

2018 ◽  
Author(s):  
Márcia Martinho Costa ◽  
Anant Shah ◽  
Ian Rivens ◽  
Carol Box ◽  
Tuathan O’Shea ◽  
...  

AbstractRadiotherapy is commonly used for cancer therapy, although its efficacy is reduced in hypoxic regions of tumours. Photoacoustic imaging (PAI) is an emergent, non-invasive imaging technique that allows the measurement of blood oxygen saturation (sO2) which inversely correlates with hypoxia in tissue. The potential use of PAI as a prognostic tool for radiotherapy outcome was investigated in a head and neck cancer model in vivo. PAI was performed before delivering a single fraction (10, 20 or 30 Gy) treatment. The results show that tumours with pre-treatment higher blood sO2 responded better than those with lower levels in the 10 and 20 Gy groups. For the 30 Gy group, treatment response was independent of blood sO2. The haemoglobin content of the tumours was not correlated with their response to any of the radiation doses studied. Changes in sO2, monitored at 24 h and 96 h following 10 and 20 Gy doses, showed that tumours that were subsequently unresponsive to treatment had an increase in blood sO2 at both time points compared to those which subsequently regressed after radiotherapy. The results suggest that sO2 values measured by photoacoustic imaging can be used before, and shortly after, irradiation to predict subsequent treatment response.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Youssouf Diarra ◽  
Oumar Koné ◽  
Lansana Sangaré ◽  
Lassina Doumbia ◽  
Dade Bouye Ben Haidara ◽  
...  

Abstract Background The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether–lumefantrine (AL) and artesunate–amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali. Methods Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2000–200,000 asexual parasites/μL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42. were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing. Results A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI 78.5–88.4%) in the AL arm and 93.1% (95% CI 89.7–96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0–95.9%) in the AL arm and 97.1% (93.6–100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common. Conclusions The findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.


2020 ◽  
Vol 10 (3) ◽  
pp. 1024 ◽  
Author(s):  
Eftekhar Rajab Bolookat ◽  
Laurie J. Rich ◽  
Gyorgy Paragh ◽  
Oscar R. Colegio ◽  
Anurag K. Singh ◽  
...  

Photoacoustic imaging (PAI) is a novel hybrid imaging modality that provides excellent optical contrast with the spatial resolution of ultrasound in vivo. The method is widely being investigated in the clinical setting for diagnostic applications in dermatology. In this report, we illustrate the utility of PAI as a non-invasive tool for imaging tattoos. Ten different samples of commercially available tattoo inks were examined for their optoacoustic properties in vitro. In vivo PAI of an intradermal tattoo on the wrist was performed in a healthy human volunteer. Black/gray, green, violet, and blue colored pigments provided higher levels of PA signal compared to white, orange, red, and yellow pigments in vitro. PAI provided excellent contrast and enabled accurate delineation of the extent of the tattoo in the dermis. Our results reveal the photoacoustic properties of tattoo inks and demonstrate the potential clinical utility of PAI for intradermal imaging of tattoos. PAI may be useful as a clinical adjunct for objective preoperative evaluation of tattoos and potentially to guide/monitor laser-based tattoo removal procedures.


Author(s):  
Timothy Crook ◽  
Andrew Gaya ◽  
Raymond Page ◽  
Sewanti Limaye ◽  
Anantbhushan Ranade ◽  
...  

Abstract Purpose Selection of cytotoxic chemotherapy agents (CCA) based on pre-treatment evaluation of drug sensitivities is a desirable but unmet goal for personalized anticancer treatment strategies. Prior attempts to correlate in vitro Chemo-Response Profiles (CRP) of tumor explants or Circulating Tumor Cells (CTCs) with clinical outcomes have been largely unsuccessful. Methods We present results from a large cohort (n = 5090, three Arms) of patients with various solid organ tumors, where CRP of Circulating Tumor-Associated Cells (C-TACs) was determined against cancer-specific CCA panels to generate a database of 56,466 unique CRP. Results In Arm 1 (n = 230), 93.7% concordance was observed between CRP of C-TACs and concurrently obtained Tumor tissue Derived Cells (TDCs). In arm 2 (n = 2201, pretreated), resistance of C-TACs to ≥ 1 CCA was observed in 79% of cases. In a blinded subset analysis of 143 pretreated patients with radiologically ascertained disease progression, CRP of C-TACs was 87% concordant with in vivo treatment failure. In Arm 3 (n = 2734, therapy naïve), innate resistance of C-TACs to ≥ 1 CCA was observed in 61% of cases. In a blinded subset analysis of 77 therapy naïve patients, in vitro chemo-sensitivity of C-TACs was concordant with radiologically ascertained treatment response to first line CCA in 97% of cases. Conclusion To our knowledge, this is the first expansive and in-depth study demonstrating that real-time CRP of C-TACs is a viable approach for non-invasive assessment of response to CCA in solid organ cancers.


2007 ◽  
Vol 29 (5) ◽  
pp. 391-398 ◽  
Author(s):  
C. Ostacolo ◽  
A. Sacchi ◽  
A. Bernardi ◽  
S. Laneri ◽  
A. Brunetta ◽  
...  

2007 ◽  
Vol 364-366 ◽  
pp. 1123-1127
Author(s):  
Shi Hua Yang ◽  
Ye Qi Lao

The highlight of photoacosutic imaging (PAI) is a method that combines ultrasonic resolution with high contrast due to light absorption. Photoacoustic signals carry the information of the light absorption distribution of biological tissue, which is often related to its character of structure, physiological and pathological changes because of different physiology conditions in response to different light absorption coefficients. A non-invasive PAI system was developed and successfully acquired in vivo images of mouse brain. Based on the intrinsic PA signals from the brain, the vascular network and the detailed structures of the mouse cerebral cortex were clearly visualized. The ability of PAI monitoring of cerebral hemodynamics was also demonstrated by mapping of the mouse superficial cortex with and without drug stimulation. The extracted PA signals intensity profiles obviously testified that the cerebral blood flow (CBF) in the mouse brain was changed under the stimulation of acetazolamide (ACZ). The experimental results suggest that PAI can provide non-invasive images of blood flow changes, and has the potential for brain function detection.


2022 ◽  
Author(s):  
Wentian Chen ◽  
Chao Tao ◽  
Zizhong Hu ◽  
Songtao Yuan ◽  
Qinghuai Liu ◽  
...  

Abstract Photoacoustic imaging is a potential candidate for in-vivo brain imaging, whereas, its imaging performance could be degraded by inhomogeneous multi-layered media, consisted of scalp and skull. In this work, we propose a low-artifact photoacoustic microscopy (LAPAM) scheme, which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers. Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes, the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images. Phantom experiment is used to validate the effectiveness of this method. Furthermore, LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull. Experimental results show that the proposed method successfully achieves the low-artifact brain image, which demonstrates the practical applicability of LAPAM. This work might improve the photoacoustic imaging quality in many biomedical applications, which involve tissue with complex acoustic properties, such as brain imaging through scalp and skull.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yonggang Liu ◽  
Taylor Hanley ◽  
Hao Chen ◽  
Steven R. Long ◽  
Sanjiv S. Gambhir ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2020 ◽  
Vol 32 (38) ◽  
pp. 2000037
Author(s):  
Xiaoxiao Ge ◽  
Hongtu Cui ◽  
Jian Kong ◽  
Shi‐Yu Lu ◽  
Rui Zhan ◽  
...  

2020 ◽  
Author(s):  
Youssouf Diarra ◽  
Oumar Koné ◽  
Lansana Sangaré ◽  
Lassina Doumbia ◽  
Dade Bouye Ben Haidara ◽  
...  

Abstract Background The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Program in Mali are artemether–lumefantrine (AL) and artesunate–amodiaquine (ASAQ). From 2015–2016, we conducted an in vivo study to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali. Methods Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2,000–200,000 asexual parasites/µL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42 were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing. Results A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI: 78.5–88.4%) in the AL arm and 93.1% (95% CI: 89.7–96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0–95.9%) in the AL arm and 97.1% (93.6–100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common. Conclusions Our findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.


Sign in / Sign up

Export Citation Format

Share Document