scholarly journals Identification and characterisation of serotonin signalling in the potato cyst nematode Globodera pallida reveals new targets for crop protection

2018 ◽  
Author(s):  
Anna Crisford ◽  
Fernando Calahorro ◽  
Elizabeth Ludlow ◽  
Jessica M.C. Marvin ◽  
Jennifer K. Hibbard ◽  
...  

AbstractPlant parasitic nematodes are microscopic pests that invade plant roots and cause extensive damage to crops worldwide. To investigate mechanisms underpinning their parasitic behaviour we used a chemical biology approach: We discovered that reserpine, a plant alkaloid known for its antagonism of the mammalian vesicular monoamine transporter VMAT and ability to impart a global depletion of synaptic biogenic amines in the nervous system, potently impairs the ability of the potato cyst nematode Globodera pallida to enter the host plant root. We show that this effect of reserpine is mediated by an inhibition of serotonergic signalling that is essential for activation of the stylet, a lance-like organ that protrudes from the mouth of the worm and which is used to pierce the host root to gain access. Prompted by this we identified core molecular components of G. pallida serotonin signalling encompassing the target of reserpine, VMAT; the synthetic enzyme for serotonin, tryptophan hydroxylase; the G protein coupled receptor SER-7 and the serotonin-gated chloride channel MOD-1. We found that inhibitors of tryptophan hydroxylase, SER-7 and MOD-1 phenocopy the plant protecting action of reserpine. Thus targeting the serotonin signalling pathway presents a promising new route to control plant parasitic nematodes.SummaryIndian snakeroot, an herbal medicine prepared from the roots of the shrub Rauwolfia serpentina, has been used for centuries for its calming action. The major active constituent is reserpine which works by depleting a specific class of mood regulating chemical in the brain, the biogenic amines. We have discovered a remarkable effect of reserpine on a pest of global concern, the plant parasitic nematodes. These microscopic worms invade the roots of crops presenting a severe threat to food production. We show that reserpine disables serotonin signalling in the worm’s ‘brain’ that regulates the rhythmic thrusting of the stylet: a lance-like structure that protrudes from its mouth to pierce the plant root and which is essential to its parasitic lifecycle. Thus, reserpine joins nicotine as another intriguing example of Nature evolving its own protection against pests. We have identified key components of the serotonin signalling pathway in the potato cyst nematode Globodera pallida and show that chemicals that target these sites inhibit the ability of the nematode to invade its host plant. We conclude that biogenic amine transmitters are intimately involved in the worm’s parasitic behaviour and provide a new discrete route to crop protection.

Nematology ◽  
2012 ◽  
Vol 14 (7) ◽  
pp. 869-873 ◽  
Author(s):  
Ayano Sasaki-Crawley ◽  
Rosane Curtis ◽  
Michael Birkett ◽  
Apostolos Papadopoulos ◽  
Rod Blackshaw ◽  
...  

This paper demonstrates a simple novel in vitro method using Pluronic F-127 aqueous solution to study the development of the potato cyst nematode, Globodera pallida, in Solanum spp. without any need for sterilisation of either the plants or the nematodes. In this study, this method was successfully applied to comparative studies on the development of G. pallida in Solanum tuberosum (potato) or S. sisymbriifolium (sticky nightshade). The protocol described here could be useful for screening transgenic plants or different plant cultivars/species for their ability to allow development not only of G. pallida but also any other plant-parasitic nematodes.


Plant Disease ◽  
2021 ◽  
Author(s):  
Andrea Caroline Ruthes ◽  
Paul Dahlin

Globodera rostochiensis and Globodera pallida are some of the most successful and highly specialized plant-parasitic nematodes, and appear among the most regulated quarantine pests globally. In Switzerland, they have been monitored by annual surveys since their first detection in Swiss soil, in 1958. The dataset created was reviewed to give an overview of the development and actual status of PCN in Switzerland. Positive fields represent 0.2% of all the samples analyzed, and currently their distribution is limited to central-west and western Switzerland, suggesting that new introduction of PCN and the spread of the initial introduced PCN populations did not occur. In this way, the integrated management used in Switzerland appears to be effective. However, the increasing availability of potato varieties with resistance to G. rostochiensis and the limited availability of varieties with resistance to G. pallida, together with other biotic and abiotic factors promoted changes in the dominance of either species. Consequently, an extended monitoring program would be of interest to Swiss farmers, to avoid favoring virulent traits that could be present within Swiss Globodera populations.


2005 ◽  
Vol 18 (7) ◽  
pp. 621-625 ◽  
Author(s):  
Qing Chen ◽  
S. Rehman ◽  
G. Smant ◽  
John T. Jones

RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted β-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the β-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.


Author(s):  
Christopher A Bell ◽  
Waddah Mobayed ◽  
Catherine J Lilley ◽  
Peter Urwin

Plants secrete a large array of compounds into the rhizosphere to facilitate interactions with their biotic environment. Some of these exuded-compounds stimulate the hatching of obligate plant-parasitic nematodes, ultimately leading to a detrimental effect on the host plant. Determining these cues can help to provide new mechanisms for control and aid nematode management schemes. Here we show that glucose, fructose and arabinose, which are all present in potato root exudate (PRE), induce hatching of white potato cyst nematode (Globodera pallida) eggs whereas five other PRE-sugars had no effect. Although these monosaccharides resulted in significant hatching none induced the same level as PRE, suggesting that other components, possibly in combination, contribute to stimulation of nematode hatching. Glucose, but not arabinose or fructose, was also observed to attract juvenile G. pallida, indicating that these hatch-inducing components can have different roles in different stages of the life cycle. Applying a solution of these monosaccharides to G. pallida-infested soil pre-potato planting initiated hatching in the absence of a host. Host absence resulted in nematode mortality and a reduction in the G. pallida population. Therefore, subsequent invasion of the crop post-planting was also reduced, compared to untreated soil. Our data suggest that monosaccharide components of PRE play an important role in the hatching and attraction of G. pallida. As a result the hatch-inducing monosaccharides can be applied as a pre-planting treatment to induce hatching and reduce subsequent infection rates.  


Nematology ◽  
2000 ◽  
Vol 2 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Godelieve Gheysen ◽  
Jan De Meutter ◽  
Tom Tytgat ◽  
August Coomans

AbstractPlant parasitic nematodes are known to cause a severe reduction in crop yield. Recently much effort is being put to engineering new nematode-resistant crop cultivars. Plant parasitic nematodes occur in three widely separated orders: Triplonchida, Dorylaimida and Tylenchida. All triplonchid and dorylaimid plant parasitic nematodes are migratory ectoparasites of roots. Within the Tylenchida, several different types of plant parasitism can be recognised. The sedentary endoparasites have the most complex interaction with their host, and are responsible for the vast majority of the agricultural damage. This causes most research to be concentrated on two groups of the sedentary endoparasitic nematodes: cyst- and root-knot nematodes. Both induce specialised feeding structures in the vascular cylinder of the plant root. The mechanism of phytoparasitism of the cyst- and root-knot nematodes is reviewed, of which some aspects will be applicable to the study of the other plant parasitic nematodes. Les nématodes parasites de plantes sont connus pour provoquer de sévères réductions dans les rendements des cultures. Actuellement, un effort se développe pour créer de nouveaux cultivars résistants aux nématodes. Les nématodes parasite de plantes appartiennent à trois ordres très éloignés: Triplonchida, Dorylaimida et Tylenchida. Tous les nématodes parasites de plantes chez les Triplonchida et Dorylaimida sont des ectoparasites migrateurs. Chez les Tylenchida, plusieurs types différents de parasitisme peuvent être identifiés. Les endoparasites sédentaires ont l’interaction la plus complexe avec leur hôte et sont responsables de la plus grande part des dégâts agricoles. C’est la raison pour laquelle la plupart des recherches sont concentrées sur deux groupes de nématodes endoparasites sédentaires, les nématodes à kystes et les nématodes galligènes. Ces deux groupes induisent des structures d’alimentation spécialisées dans les tissus vasculaires de la racine végétale. Le mécanisme parasitaire des nématodes à kystes et galligènes est revu, certaines de leurs caractéristiques pouvant être applicables à l’étude des autres nématodes phytoparasites.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aboubakr Moradi ◽  
Tina Austerlitz ◽  
Paul Dahlin ◽  
Christelle AM Robert ◽  
Corina Maurer ◽  
...  

Abstract Background Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. Results The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86–91 % and 43–93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18–25 % and 26–35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22–38 %) and survival rate (15–24 %) than those feeding on WT plants. Conclusions The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.


Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Alessandra Guerrieri ◽  
Kristýna Floková ◽  
Lieke E. Vlaar ◽  
Mario L. Schilder ◽  
Gertjan Kramer ◽  
...  

Abstract Main conclusion Solanoeclepin A is a hatching stimulant for potato cyst nematode in very low (pM) concentrations. We report a highly sensitive method for the analysis of SolA in plant root exudates using UHPLC-MS/MS and show that there is considerable natural variation in SolA production in Solanum spp. corresponding with their hatching inducing activity. Abstract Potato cyst nematode (PCN) is a plant root sedentary endoparasite, specialized in the infection of solanaceous species such as potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Earlier reports (Mulder et al. in Hatching agent for the potato cyst nematode, Patent application No. PCT/NL92/00126, 1996; Schenk et al. in Croat Chem Acta 72:593–606, 1999) showed that solanoeclepin A (SolA), a triterpenoid metabolite that was isolated from the root exudate of potato, induces the hatching of PCN. Its low concentration in potato root exudate has hindered progress in fully understanding its hatching inducing activity and exploitation in the control of PCN. To further investigate the role of SolA in hatching of PCN, the establishment of a highly sensitive analytical method is a prerequisite. Here we present the efficient single-step extraction and UHPLC-MS/MS based analysis for rapid determination of SolA in sub-nanomolar concentrations in tomato root exudate. This method was used to analyze SolA production in different tomato cultivars and related solanaceous species, including the trap crop Solanum sisymbriifolium. Hatching assays with PCN, Globodera pallida, with root exudates of tomato genotypes revealed a significant positive correlation between SolA concentration and hatching activity. Our results demonstrate that there is natural variation in SolA production within solanaceous species and that this has an effect on PCN hatching. The analytical method we have developed can potentially be used to support breeding for crop genotypes that induce less hatching and may therefore display reduced infection by PCN.


Sign in / Sign up

Export Citation Format

Share Document